Linking of motivic spheres

Clémentine Lemarié--Rieusset (Universität Duisburg-Essen, Essen, Germany)

8 November 2024

(日)

Contents

2 Linking of motivic spheres

э

A D N A B N A B N A B N

The unknot

The trefoil knot

A **knot** is a (closed) topological subspace of the 3-sphere \mathbb{S}^3 which is homeomorphic to the circle \mathbb{S}^1 (+ a tameness condition e.g. smoothness).

The unknot

The trefoil knot

A **knot** is a (closed) topological subspace of the 3-sphere \mathbb{S}^3 which is homeomorphic to the circle \mathbb{S}^1 (+ a tameness condition e.g. smoothness). An **oriented knot** is a knot with a "continuous" local trivialization of its tangent bundle, or equivalently of its normal bundle.

The unlink with two components

The Hopf link

A link is a finite union of disjoint knots (called components).

The unlink with two components (linking number = 0)

The Hopf link (linking number = 1)

A **link** is a finite union of disjoint knots (called components). The **linking number** of an oriented link with two components is the number of times one of the components turns around the other component (the sign indicating the direction).

The Solomon link (linking number = 2)

The Whitehead link (linking number = 0)

э

The Solomon link (linking number = 2)

The Whitehead link (linking number = 0)

A D F A B F A B F A B

The linking number is a complete invariant of oriented links with two components for link homotopy (i.e. $L = K_1 \sqcup K_2$ and $L' = K'_1 \sqcup K'_2$ are link homotopic if and only if they have the same linking number).

Defining the linking number: Seifert surfaces

The class S_1 in $H^1(\mathbb{S}^3 \setminus L) \simeq H_2^{BM}(\mathbb{S}^3, L)$ of Seifert surfaces of the oriented knot K_1 is the **unique** class that is sent by the **boundary map** to the (oriented) fundamental class of K_1 in $H^0(K_1) \subset H^0(L)$.

Clémentine Lemarié--Rieusset

Classical knot theory and linking of spheres

Defining the linking number: intersection of S. surfaces

This intersection corresponds to the **cup-product** $S_1 \cup S_2 \in H^2(\mathbb{S}^3 \setminus L)$.

Clémentine Lemarié--Rieusset

Defining the linking number: boundary of int. of S. surf.

This corresponds to $\partial(S_1 \cup S_2) \in H^1(L) \simeq H^1(K_1) \oplus H^1(K_2)$, which we call the **linking class**. Writing $\partial(S_1 \cup S_2) = (\sigma_1, \sigma_2)$, the **linking number** is $r((i_1)_*(\sigma_1)) \in \mathbb{Z}$ with $(i_1)_* : H^1(K_1) \to H^3(\mathbb{S}^3)$ induced by the inclusion.

Definition

The **linking couple** is the couple of integers $(h_1(\sigma_1), h_2(\sigma_2))$ with $h_i : H^1(K_i) \simeq \mathbb{Z}$ induced by the volume form ω_{K_i} of K_i .

イロト 不得 トイヨト イヨト

Definition

The **linking couple** is the couple of integers $(h_1(\sigma_1), h_2(\sigma_2))$ with $h_i : H^1(K_i) \simeq \mathbb{Z}$ induced by the volume form ω_{K_i} of K_i .

More generally, the linking class, the linking number and the linking couple can be defined in a similar manner to what we have done for two disjoint *m*-spheres \mathbb{S}^m in the (2m + 1)-sphere \mathbb{S}^{2m+1} (with $m \in \mathbb{N}$).

イロト イポト イヨト イヨト

Definition

The **linking couple** is the couple of integers $(h_1(\sigma_1), h_2(\sigma_2))$ with $h_i : H^1(K_i) \simeq \mathbb{Z}$ induced by the volume form ω_{K_i} of K_i .

More generally, the linking class, the linking number and the linking couple can be defined in a similar manner to what we have done for two disjoint *m*-spheres \mathbb{S}^m in the (2m + 1)-sphere \mathbb{S}^{2m+1} (with $m \in \mathbb{N}$).

Important fact

The linking couple is equal to $(\pm n, \pm n)$ with *n* the linking number.

イロト 不得 トイラト イラト 一日

The linking number can actually be defined in a much more general case:

 if Mⁿ is an oriented n-dimensional manifold (as defined in [Seifert and Threlfall, Lehrbuch der Topologie / A textbook of top. Chapter X],
 e.g. Sⁿ, ℝPⁿ (if n is odd, for orientability) or CP^{n/2} (if n is even))

< □ > < □ > < □ > < □ > < □ > < □ >

The linking number can actually be defined in a much more general case:

- if Mⁿ is an oriented n-dimensional manifold (as defined in [Seifert and Threlfall, Lehrbuch der Topologie / A textbook of top. Chapter X],
 e.g. Sⁿ, ℝPⁿ (if n is odd, for orientability) or ℂP^{n/2} (if n is even))
- and if A^{k-1} and B^{n-k} are disjoint oriented homologically trivial submanifolds of M^n of respective dimensions k-1 and n-k

< □ > < □ > < □ > < □ > < □ > < □ >

The linking number can actually be defined in a much more general case:

- if Mⁿ is an oriented n-dimensional manifold (as defined in [Seifert and Threlfall, Lehrbuch der Topologie / A textbook of top. Chapter X],
 e.g. Sⁿ, ℝPⁿ (if n is odd, for orientability) or ℂP^{n/2} (if n is even))
- and if A^{k-1} and B^{n-k} are disjoint oriented homologically trivial submanifolds of M^n of respective dimensions k-1 and n-k
- then the linking number of A^{k-1} and B^{n-k} is the intersection number of C^k with B^{n-k}, where C^k is a k-dimensional singular chain of boundary A^{k-1} (e.g. C^k is a k-dimensional oriented submanifold of Mⁿ whose oriented boundary is A^{k-1}).

The linking number can actually be defined in a much more general case:

- if Mⁿ is an oriented n-dimensional manifold (as defined in [Seifert and Threlfall, Lehrbuch der Topologie / A textbook of top. Chapter X],
 e.g. Sⁿ, ℝPⁿ (if n is odd, for orientability) or ℂP^{n/2} (if n is even))
- and if A^{k-1} and B^{n-k} are disjoint oriented homologically trivial submanifolds of M^n of respective dimensions k-1 and n-k
- then the linking number of A^{k-1} and B^{n-k} is the intersection number of C^k with B^{n-k}, where C^k is a k-dimensional singular chain of boundary A^{k-1} (e.g. C^k is a k-dimensional oriented submanifold of Mⁿ whose oriented boundary is A^{k-1}).
- Examples: $M^n = \mathbb{S}^n$, $A^{k-1} \simeq \mathbb{S}^{k-1}$, $B^{n-k} \simeq \mathbb{S}^{n-k}$. If in addition k-1 = n-k, then the definition of the linking number we have presented before agrees with this definition.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

3

A D N A B N A B N A B N

From now on, F denotes a perfect field.

Definition

Let $i, j \in \mathbb{N}_0$. A smooth model of the motivic sphere $S^i \wedge \mathbb{G}_m^{\wedge j}$ is a smooth finite-type *F*-scheme which is \mathbb{A}^1 -homotopic to $S^i \wedge \mathbb{G}_m^{\wedge j}$, where S^i is the *i*-th smash-product of the simplicial circle S^1 and $\mathbb{G}_m^{\wedge j}$ is the *j*-th smash-product of the multiplicative group.

< □ > < □ > < □ > < □ > < □ > < □ >

From now on, F denotes a perfect field.

Definition

Let $i, j \in \mathbb{N}_0$. A smooth model of the motivic sphere $S^i \wedge \mathbb{G}_m^{\wedge j}$ is a smooth finite-type *F*-scheme which is \mathbb{A}^1 -homotopic to $S^i \wedge \mathbb{G}_m^{\wedge j}$, where S^i is the *i*-th smash-product of the simplicial circle S^1 and $\mathbb{G}_m^{\wedge j}$ is the *j*-th smash-product of the multiplicative group.

• Spec(F) \coprod Spec(F) is a smooth model of the motivic sphere S^0 .

< □ > < □ > < □ > < □ > < □ > < □ >

From now on, F denotes a perfect field.

Definition

Let $i, j \in \mathbb{N}_0$. A smooth model of the motivic sphere $S^i \wedge \mathbb{G}_m^{\wedge j}$ is a smooth finite-type *F*-scheme which is \mathbb{A}^1 -homotopic to $S^i \wedge \mathbb{G}_m^{\wedge j}$, where S^i is the *i*-th smash-product of the simplicial circle S^1 and $\mathbb{G}_m^{\wedge j}$ is the *j*-th smash-product of the multiplicative group.

- Spec(F) \coprod Spec(F) is a smooth model of the motivic sphere S^0 .
- $\mathbb{G}_{m,F}$ is a smooth model of the motivic sphere \mathbb{G}_m .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

From now on, F denotes a perfect field.

Definition

Let $i, j \in \mathbb{N}_0$. A smooth model of the motivic sphere $S^i \wedge \mathbb{G}_m^{\wedge j}$ is a smooth finite-type *F*-scheme which is \mathbb{A}^1 -homotopic to $S^i \wedge \mathbb{G}_m^{\wedge j}$, where S^i is the *i*-th smash-product of the simplicial circle S^1 and $\mathbb{G}_m^{\wedge j}$ is the *j*-th smash-product of the multiplicative group.

- Spec(F) \coprod Spec(F) is a smooth model of the motivic sphere S^0 .
- $\mathbb{G}_{m,F}$ is a smooth model of the motivic sphere \mathbb{G}_m .
- \mathbb{P}^1_F is a smooth model of the motivic sphere $S^1 \wedge \mathbb{G}_m$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

From now on, F denotes a perfect field.

Definition

Let $i, j \in \mathbb{N}_0$. A smooth model of the motivic sphere $S^i \wedge \mathbb{G}_m^{\wedge j}$ is a smooth finite-type *F*-scheme which is \mathbb{A}^1 -homotopic to $S^i \wedge \mathbb{G}_m^{\wedge j}$, where S^i is the *i*-th smash-product of the simplicial circle S^1 and $\mathbb{G}_m^{\wedge j}$ is the *j*-th smash-product of the multiplicative group.

- Spec(F) \coprod Spec(F) is a smooth model of the motivic sphere S^0 .
- $\mathbb{G}_{m,F}$ is a smooth model of the motivic sphere \mathbb{G}_m .
- \mathbb{P}^1_F is a smooth model of the motivic sphere $S^1 \wedge \mathbb{G}_m$.
- $\mathbb{A}^n_F \setminus \{0\}$ is a smooth model of the motivic sphere $S^{n-1} \wedge \mathbb{G}_m^{\wedge n}$.

Results in Asok, Doran and Fasel's 2016 article

• Beware: not every motivic sphere has a smooth model! In fact, if i > j, the motivic sphere $S^i \wedge \mathbb{G}_m^{\wedge j}$ does not have a smooth model.

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

Results in Asok, Doran and Fasel's 2016 article

- Beware: not every motivic sphere has a smooth model! In fact, if i > j, the motivic sphere $S^i \wedge \mathbb{G}_m^{\wedge j}$ does not have a smooth model.
- For each $n \in \mathbb{N}_0$, Q_{2n} is a smooth model of $S^n \wedge \mathbb{G}_m^{\wedge n}$, where:

$$Q_{2n} := \operatorname{Spec}(F[x_1, \dots, x_n, y_1, \dots, y_n, z]/(\sum_{i=1}^n x_i y_i - z(1+z)))$$

Results in Asok, Doran and Fasel's 2016 article

- Beware: not every motivic sphere has a smooth model! In fact, if i > j, the motivic sphere $S^i \wedge \mathbb{G}_m^{\wedge j}$ does not have a smooth model.
- For each $n \in \mathbb{N}_0$, Q_{2n} is a smooth model of $S^n \wedge \mathbb{G}_m^{\wedge n}$, where:

$$Q_{2n} := \operatorname{Spec}(F[x_1, \ldots, x_n, y_1, \ldots, y_n, z]/(\sum_{i=1}^n x_i y_i - z(1+z)))$$

• For each $n \in \mathbb{N}$, Q_{2n-1} is a smooth model of $S^{n-1} \wedge \mathbb{G}_m^{\wedge n}$, where:

$$Q_{2n-1} := \operatorname{Spec}(F[x_1, \dots, x_n, y_1, \dots, y_n]/(\sum_{i=1}^n x_i y_i - 1))$$

Links in algebraic geometry

Let F be a perfect field and X be a smooth finite-type irred. F-scheme.

Link with two components

A link with two components in X is a couple of disjoint smooth finite-type irreducible closed F-subschemes Z_1 and Z_2 of X such that:

• Z_1 and Z_2 have the same codimension c in X;

•
$$H^{c-1}(X, \underline{K}_{j_1+c}^{MW}) = 0$$
 and $H^c(X, \underline{K}_{j_1+c}^{MW}) = 0$ for some $j_1 \leq 0$;

• $H^{c-1}(X, \underline{K}_{j_2+c}^{MW}) = 0$ and $H^c(X, \underline{K}_{j_2+c}^{MW}) = 0$ for some $j_2 \leq 0$.

Example: $Z_1 \simeq \mathbb{A}_F^2 \setminus \{0\}$ and $Z_2 \simeq \mathbb{A}_F^2 \setminus \{0\}$ disjoint closed *F*-subschemes of $X = \mathbb{A}_F^4 \setminus \{0\}$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへで

The Hopf link and the Solomon link

Here *F* is a perfect field of characteristic different from 2. We fix coordinates x, y, z, t for \mathbb{A}_F^4 once and for all.

- The Hopf link: $Z_1 = \{z = x, t = y\}$ and $Z_2 = \{z = -x, t = -y\}$ in $X = \mathbb{A}_F^4 \setminus \{0\}$
- The Solomon link: $Z_1 = \{z = x^2 y^2, t = 2xy\}$ and $Z_2 = \{z = -x^2 + y^2, t = -2xy\}$ in $X = \mathbb{A}_F^4 \setminus \{0\}$

The Hopf link (linking number = 1)

The Solomon link (linking number = 2)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Oriented links in algebraic geometry

An orientation o_i of Z_i is an isomorphism from the determinant (i.e. the maximal exterior power) of the normal sheaf $\mathcal{N}_{Z_i/X}$ of Z_i in X to the tensor product of an invertible \mathcal{O}_{Z_i} -module \mathcal{L}_i with itself:

$$o_i:
u_{Z_i}:= \mathsf{det}(\mathcal{N}_{Z_i/X}) \simeq \mathcal{L}_i \otimes \mathcal{L}_i$$

(日)

Oriented links in algebraic geometry

An orientation o_i of Z_i is an isomorphism from the determinant (i.e. the maximal exterior power) of the normal sheaf $\mathcal{N}_{Z_i/X}$ of Z_i in X to the tensor product of an invertible \mathcal{O}_{Z_i} -module \mathcal{L}_i with itself:

$$o_i:
u_{Z_i}:= \det(\mathcal{N}_{Z_i/X}) \simeq \mathcal{L}_i \otimes \mathcal{L}_i$$

Orientation classes

Two orientations $o_i : \nu_{Z_i} \to \mathcal{L}_i \otimes \mathcal{L}_i$ and $o'_i : \nu_{Z_i} \to \mathcal{L}'_i \otimes \mathcal{L}'_i$ of Z_i represent the same orientation class of Z_i if there exists an isomorphism $\psi : \mathcal{L}_i \simeq \mathcal{L}'_i$ such that $(\psi \otimes \psi) \circ o_i = o'_i$.

The link (Z_1, Z_2) together with an orientation class $\overline{o_1}$ of Z_1 and an orientation class $\overline{o_2}$ of Z_2 is an oriented link with two components.

Oriented fundamental classes and Seifert classes

Let $i \in \{1, 2\}$.

Definition

• We define the **oriented fundamental class** $[o_i]_{j_i}$ with respect to $j_i \leq 0$ as the unique class in $H^0(Z_i, \underline{K}_{j_i}^{MW} \{\nu_{Z_i}\})$ that is sent by $\widetilde{o_i}$ to the class of η^{-j_i} in $H^0(Z_i, \underline{K}_{j_i}^{MW})$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Oriented fundamental classes and Seifert classes

Let $i \in \{1, 2\}$.

Definition

- We define the **oriented fundamental class** $[o_i]_{j_i}$ with respect to $j_i \leq 0$ as the unique class in $H^0(Z_i, \underline{K}_{j_i}^{MW} \{\nu_{Z_i}\})$ that is sent by $\widetilde{o_i}$ to the class of η^{-j_i} in $H^0(Z_i, \underline{K}_{j_i}^{MW})$.
- We define the **Seifert class** S_{o_i,j_i} with respect to j_i as the unique class in $H^{c-1}(X \setminus Z, \underline{K}_{j_i+c}^{MW})$ that is sent by the boundary map ∂ to the oriented fundamental class $[o_i]_{j_i} \in H^0(Z, \underline{K}_{j_i}^{MW}\{\nu_Z\})$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Oriented fundamental classes and Seifert classes

Let $i \in \{1, 2\}$.

Definition

- We define the **oriented fundamental class** $[o_i]_{j_i}$ with respect to $j_i \leq 0$ as the unique class in $H^0(Z_i, \underline{K}_{j_i}^{MW} \{\nu_{Z_i}\})$ that is sent by $\widetilde{o_i}$ to the class of η^{-j_i} in $H^0(Z_i, \underline{K}_{j_i}^{MW})$.
- We define the **Seifert class** S_{o_i,j_i} with respect to j_i as the unique class in $H^{c-1}(X \setminus Z, \underline{K}_{j_i+c}^{MW})$ that is sent by the boundary map ∂ to the oriented fundamental class $[o_i]_{j_i} \in H^0(Z, \underline{K}_{j_i}^{MW}\{\nu_Z\})$.

The assumptions $H^{c-1}(X, \underline{K}_{j_i+c}^{MW}) = 0$ and $H^c(X, \underline{K}_{j_i+c}^{MW}) = 0$ made earlier are there to ensure the unicity and the existence resp. of the Seifert class.

▲日▼▲□▼▲ヨ▼▲ヨ▼ ヨークタの

The (ambient) quadratic linking class / degree

The quadratic linking class

We define the **quadratic linking class** with respect to (j_1, j_2) as the image of the intersection product $S_{o_1,j_1} \cdot S_{o_2,j_2}$ by the boundary map $\partial : H^{2c-2}(X \setminus Z, \underline{K}_{j_1+j_2+2c}^{MW}) \to H^{c-1}(Z, \underline{K}_{j_1+j_2+c}^{MW} \{\nu_Z\}).$

The **quadratic linking degree** (couple) is the image of the quadratic linking class by an isomorphism.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The (ambient) quadratic linking class / degree

The quadratic linking class

We define the **quadratic linking class** with respect to (j_1, j_2) as the image of the intersection product $S_{o_1,j_1} \cdot S_{o_2,j_2}$ by the boundary map $\partial : H^{2c-2}(X \setminus Z, \underline{K}_{j_1+j_2+2c}^{MW}) \to H^{c-1}(Z, \underline{K}_{j_1+j_2+c}^{MW} \{\nu_Z\}).$

The **quadratic linking degree** (couple) is the image of the quadratic linking class by an isomorphism.

The ambient quadratic linking class

We define the **ambient quadratic linking class** with respect to (j_1, j_2) as the image of the part of the quadratic linking class which is in $H^{c-1}(Z_1, \underline{K}_{j_1+j_2+c}^{MW}\{\nu_{Z_1}\})$ by the morphism $(i_1)_*: H^{c-1}(Z_1, \underline{K}_{j_1+j_2+c}^{MW}\{\nu_{Z_1}\}) \rightarrow H^{2c-1}(X, \underline{K}_{j_1+j_2+2c}^{MW}).$

The **ambient quadratic linking degree** is the image of the ambient quadratic linking class by an isomorphism.

Clémentine Lemarié--Rieusset

Linking of motivic spheres

• The oriented Hopf link: $Z_1 = \{z = x, t = y\}$ with $o_1 : \overline{z - x^*} \wedge \overline{t - y^*} \mapsto 1 \otimes 1$ and $Z_2 = \{z = -x, t = -y\}$ with $o_2 : \overline{z + x^*} \wedge \overline{t + y^*} \mapsto 1 \otimes 1$ in $X = \mathbb{A}_F^4 \setminus \{0\}$

- The oriented Hopf link: $Z_1 = \{z = x, t = y\}$ with $o_1 : \overline{z - x^*} \wedge \overline{t - y^*} \mapsto 1 \otimes 1$ and $Z_2 = \{z = -x, t = -y\}$ with $o_2 : \overline{z + x^*} \wedge \overline{t + y^*} \mapsto 1 \otimes 1$ in $X = \mathbb{A}_F^4 \setminus \{0\}$
- Its quadratic linking class is $-\langle z+x\rangle\eta\otimes(\overline{t+y}^*\wedge\overline{z-x}^*\wedge\overline{t-y}^*)\oplus\langle z-x\rangle\eta\otimes(\overline{t-y}^*\wedge\overline{z+x}^*\wedge\overline{t+y}^*)$ in $H^1(Z_1,\underline{K}_0^{MW}\{\nu_{Z_1}\})\oplus H^1(Z_2,\underline{K}_0^{MW}\{\nu_{Z_2}\})$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- The oriented Hopf link: $Z_1 = \{z = x, t = y\}$ with $o_1 : \overline{z - x}^* \land \overline{t - y}^* \mapsto 1 \otimes 1$ and $Z_2 = \{z = -x, t = -y\}$ with $o_2 : \overline{z + x}^* \land \overline{t + y}^* \mapsto 1 \otimes 1$ in $X = \mathbb{A}_F^4 \setminus \{0\}$
- Its quadratic linking class is $-\langle z+x\rangle\eta\otimes(\overline{t+y}^*\wedge\overline{z-x}^*\wedge\overline{t-y}^*)\oplus$ $\langle z-x\rangle\eta\otimes(\overline{t-y}^*\wedge\overline{z+x}^*\wedge\overline{t+y}^*)$ in $H^1(Z_1,\underline{K}_0^{MW}\{\nu_{Z_1}\})\oplus H^1(Z_2,\underline{K}_0^{MW}\{\nu_{Z_2}\})$
- Its quadratic linking degree for (u, v, u, v) and (u, v, -u, -v) is $(1, -1) \in W(F) \oplus W(F)$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- The oriented Hopf link: $Z_1 = \{z = x, t = y\}$ with $o_1: \overline{z - x^*} \wedge \overline{t - y^*} \mapsto 1 \otimes 1$ and $Z_2 = \{z = -x, t = -y\}$ with $o_2: \overline{z + x^*} \wedge \overline{t + y^*} \mapsto 1 \otimes 1$ in $X = \mathbb{A}_F^4 \setminus \{0\}$
- Its quadratic linking class is $-\langle z+x\rangle\eta\otimes(\overline{t+y}^*\wedge\overline{z-x}^*\wedge\overline{t-y}^*)\oplus$ $\langle z-x\rangle\eta\otimes(\overline{t-y}^*\wedge\overline{z+x}^*\wedge\overline{t+y}^*)$ in $H^1(Z_1,\underline{K}_0^{MW}\{\nu_{Z_1}\})\oplus H^1(Z_2,\underline{K}_0^{MW}\{\nu_{Z_2}\})$
- Its quadratic linking degree for (u, v, u, v) and (u, v, -u, -v) is $(1, -1) \in W(F) \oplus W(F)$
- Its ambient quadratic linking class is $-\langle z+x\rangle\eta\otimes(\overline{t+y}^*\wedge\overline{z-x}^*\wedge\overline{t-y}^*)\in H^3(X,\underline{K}_2^{\mathsf{MW}})$

- The oriented Hopf link: $Z_1 = \{z = x, t = y\}$ with $o_1 : \overline{z - x^*} \wedge \overline{t - y^*} \mapsto 1 \otimes 1$ and $Z_2 = \{z = -x, t = -y\}$ with $o_2 : \overline{z + x^*} \wedge \overline{t + y^*} \mapsto 1 \otimes 1$ in $X = \mathbb{A}_F^4 \setminus \{0\}$
- Its quadratic linking class is $-\langle z+x\rangle\eta\otimes(\overline{t+y}^*\wedge\overline{z-x}^*\wedge\overline{t-y}^*)\oplus$ $\langle z-x\rangle\eta\otimes(\overline{t-y}^*\wedge\overline{z+x}^*\wedge\overline{t+y}^*)$ in $H^1(Z_1,\underline{K}_0^{MW}\{\nu_{Z_1}\})\oplus H^1(Z_2,\underline{K}_0^{MW}\{\nu_{Z_2}\})$
- Its quadratic linking degree for (u, v, u, v) and (u, v, -u, -v) is $(1, -1) \in W(F) \oplus W(F)$
- Its ambient quadratic linking class is $-\langle z+x\rangle\eta\otimes(\overline{t+y}^*\wedge\overline{z-x}^*\wedge\overline{t-y}^*)\in H^3(X,\underline{K}_2^{\mathsf{MW}})$
- Its ambient quadratic linking degree is $-1 \in W(F)$

• The oriented Solomon link:
$$Z_1 = \{z = x^2 - y^2, t = 2xy\}$$
 with $o_1: \overline{z - x^2 + y^2}^* \wedge \overline{t - 2xy}^* \mapsto 1 \otimes 1$ and $Z_2 = \{z = -x^2 + y^2, t = -2xy\}$ with $o_2: \overline{z + x^2 - y^2}^* \wedge \overline{t + 2xy}^* \mapsto 1 \otimes 1$ in $X = \mathbb{A}_F^4 \setminus \{0\}$

э

イロト イヨト イヨト イヨト

- The oriented Solomon link: $Z_1 = \{z = x^2 y^2, t = 2xy\}$ with $o_1: \overline{z - x^2 + y^2}^* \land \overline{t - 2xy}^* \mapsto 1 \otimes 1$ and $Z_2 = \{z = -x^2 + y^2, t = -2xy\}$ with $o_2: \overline{z + x^2 - y^2}^* \land \overline{t + 2xy}^* \mapsto 1 \otimes 1$ in $X = \mathbb{A}_F^4 \setminus \{0\}$
- Its quadratic linking class is $\begin{array}{l} -\langle z+x^2-y^2\rangle\eta\otimes(\overline{t+2xy^*}\wedge\overline{z-x^2+y^2}^*\wedge\overline{t-2xy^*})\oplus\langle z-x^2+y^2\rangle\\ y^2\rangle\eta\otimes(\overline{t-2xy^*}\wedge\overline{z+x^2-y^2}^*\wedge\overline{t+2xy^*}) \text{ in }\\ H^1(Z_1,\underline{K}_0^{\mathsf{MW}}\{\nu_{Z_1}\})\oplus H^1(Z_2,\underline{K}_0^{\mathsf{MW}}\{\nu_{Z_2}\})\end{array}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- The oriented Solomon link: $Z_1 = \{z = x^2 y^2, t = 2xy\}$ with $o_1: \overline{z - x^2 + y^2}^* \land \overline{t - 2xy}^* \mapsto 1 \otimes 1$ and $Z_2 = \{z = -x^2 + y^2, t = -2xy\}$ with $o_2: \overline{z + x^2 - y^2}^* \land \overline{t + 2xy}^* \mapsto 1 \otimes 1$ in $X = \mathbb{A}_F^4 \setminus \{0\}$
- Its quadratic linking class is $\begin{array}{l} -\langle z+x^2-y^2\rangle\eta\otimes(\overline{t+2xy^*}\wedge\overline{z-x^2+y^2}^*\wedge\overline{t-2xy^*})\oplus\langle z-x^2+y^2\rangle\\ y^2\rangle\eta\otimes(\overline{t-2xy^*}\wedge\overline{z+x^2-y^2}^*\wedge\overline{t+2xy^*}) \text{ in }\\ H^1(Z_1,\underline{K}_0^{\mathsf{MW}}\{\nu_{Z_1}\})\oplus H^1(Z_2,\underline{K}_0^{\mathsf{MW}}\{\nu_{Z_2}\})\end{array}$
- Its quadratic linking degree for $(u, v, u^2 v^2, 2uv)$ and $(u, v, -u^2 + v^2, -2uv)$ is $(2, -2) \in W(F) \oplus W(F)$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- The oriented Solomon link: $Z_1 = \{z = x^2 y^2, t = 2xy\}$ with $o_1: \overline{z - x^2 + y^2}^* \land \overline{t - 2xy}^* \mapsto 1 \otimes 1$ and $Z_2 = \{z = -x^2 + y^2, t = -2xy\}$ with $o_2: \overline{z + x^2 - y^2}^* \land \overline{t + 2xy}^* \mapsto 1 \otimes 1$ in $X = \mathbb{A}_F^4 \setminus \{0\}$
- Its quadratic linking class is $\begin{array}{l} -\langle z+x^2-y^2\rangle\eta\otimes(\overline{t+2xy^*}\wedge\overline{z-x^2+y^2}^*\wedge\overline{t-2xy^*})\oplus\langle z-x^2+y^2\rangle\\ y^2\rangle\eta\otimes(\overline{t-2xy^*}\wedge\overline{z+x^2-y^2}^*\wedge\overline{t+2xy^*}) \text{ in }\\ H^1(Z_1,\underline{K}_0^{\mathsf{MW}}\{\nu_{Z_1}\})\oplus H^1(Z_2,\underline{K}_0^{\mathsf{MW}}\{\nu_{Z_2}\})\end{array}$
- Its quadratic linking degree for $(u, v, u^2 v^2, 2uv)$ and $(u, v, -u^2 + v^2, -2uv)$ is $(2, -2) \in W(F) \oplus W(F)$
- Its ambient quadratic linking class is $-\langle z+x^2-y^2\rangle \eta \otimes (\overline{t+2xy}^* \wedge \overline{z-x^2+y^2}^* \wedge \overline{t-2xy}^*) \in H^3(X, \underline{K}_2^{MW})$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- The oriented Solomon link: $Z_1 = \{z = x^2 y^2, t = 2xy\}$ with $o_1: \overline{z - x^2 + y^2}^* \land \overline{t - 2xy}^* \mapsto 1 \otimes 1$ and $Z_2 = \{z = -x^2 + y^2, t = -2xy\}$ with $o_2: \overline{z + x^2 - y^2}^* \land \overline{t + 2xy}^* \mapsto 1 \otimes 1$ in $X = \mathbb{A}_F^4 \setminus \{0\}$
- Its quadratic linking class is $\begin{array}{l} -\langle z+x^2-y^2\rangle\eta\otimes(\overline{t+2xy^*}\wedge\overline{z-x^2+y^2}^*\wedge\overline{t-2xy^*})\oplus\langle z-x^2+y^2\rangle\\ y^2\rangle\eta\otimes(\overline{t-2xy^*}\wedge\overline{z+x^2-y^2}^*\wedge\overline{t+2xy^*}) \text{ in }\\ H^1(Z_1,\underline{K}_0^{\mathsf{MW}}\{\nu_{Z_1}\})\oplus H^1(Z_2,\underline{K}_0^{\mathsf{MW}}\{\nu_{Z_2}\})\end{array}$
- Its quadratic linking degree for $(u, v, u^2 v^2, 2uv)$ and $(u, v, -u^2 + v^2, -2uv)$ is $(2, -2) \in W(F) \oplus W(F)$
- Its ambient quadratic linking class is $-\langle z+x^2-y^2\rangle \eta \otimes (\overline{t+2xy}^* \wedge \overline{z-x^2+y^2}^* \wedge \overline{t-2xy}^*) \in H^3(X, \underline{K}_2^{MW})$
- Its ambient quadratic linking degree is $-2\in\mathsf{W}(\mathsf{F})$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

イロト 不得 トイラト イラト 一日

• $\mathbb{A}_{F}^{n} \setminus \{0\} \sqcup \mathbb{A}_{F}^{n} \setminus \{0\} \to \mathbb{A}_{F}^{2n} \setminus \{0\}$ with $n \geq 2$ (and ambient qlc \checkmark);

- $\mathbb{A}_{F}^{n} \setminus \{0\} \sqcup \mathbb{A}_{F}^{n} \setminus \{0\} \to \mathbb{A}_{F}^{2n} \setminus \{0\}$ with $n \geq 2$ (and ambient qlc \checkmark);
- $\mathbb{A}_F^n \setminus \{0\} \sqcup Q_n \to \mathbb{A}_F^{2n} \setminus \{0\}$ with $n \ge 3$;

•
$$\mathbb{A}_{F}^{n} \setminus \{0\} \sqcup \mathbb{A}_{F}^{n} \setminus \{0\} \to \mathbb{A}_{F}^{2n} \setminus \{0\}$$
 with $n \geq 2$ (and ambient qlc \checkmark);

•
$$\mathbb{A}_F^n \setminus \{0\} \sqcup Q_n \to \mathbb{A}_F^{2n} \setminus \{0\}$$
 with $n \ge 3$;

• $\mathbb{A}_F^2 \setminus \{0\} \sqcup Q_2 \to \mathbb{A}_F^4 \setminus \{0\}$ (and ambient qlc \checkmark);

•
$$\mathbb{A}_{F}^{n} \setminus \{0\} \sqcup \mathbb{A}_{F}^{n} \setminus \{0\} \to \mathbb{A}_{F}^{2n} \setminus \{0\}$$
 with $n \geq 2$ (and ambient qlc \checkmark);

•
$$\mathbb{A}_F^n \setminus \{0\} \sqcup Q_n \to \mathbb{A}_F^{2n} \setminus \{0\}$$
 with $n \ge 3$;

- $\mathbb{A}_F^2 \setminus \{0\} \sqcup Q_2 \to \mathbb{A}_F^4 \setminus \{0\}$ (and ambient qlc \checkmark);
- $\mathbb{A}_{F}^{n} \setminus \{0\} \sqcup Q_{n} \to \mathbb{A}_{F}^{n+\lfloor \frac{n}{2} \rfloor+1} \setminus \{0\}$ with $n \geq 3$;

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のQの

•
$$\mathbb{A}_{F}^{n} \setminus \{0\} \sqcup \mathbb{A}_{F}^{n} \setminus \{0\} \to \mathbb{A}_{F}^{2n} \setminus \{0\}$$
 with $n \geq 2$ (and ambient qlc \checkmark);

•
$$\mathbb{A}_F^n \setminus \{0\} \sqcup Q_n \to \mathbb{A}_F^{2n} \setminus \{0\}$$
 with $n \ge 3$;

- $\mathbb{A}_F^2 \setminus \{0\} \sqcup Q_2 \to \mathbb{A}_F^4 \setminus \{0\}$ (and ambient qlc \checkmark);
- $\mathbb{A}_{F}^{n} \setminus \{0\} \sqcup Q_{n} \to \mathbb{A}_{F}^{n + \lfloor \frac{n}{2} \rfloor + 1} \setminus \{0\}$ with $n \geq 3$;

•
$$Q_2 \sqcup Q_2 \to \mathbb{A}_F^4 \setminus \{0\}$$
 (and ambient qlc \checkmark);

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のQの

•
$$\mathbb{A}_{F}^{n} \setminus \{0\} \sqcup \mathbb{A}_{F}^{n} \setminus \{0\} \to \mathbb{A}_{F}^{2n} \setminus \{0\}$$
 with $n \geq 2$ (and ambient qlc \checkmark);

•
$$\mathbb{A}_F^n \setminus \{0\} \sqcup Q_n \to \mathbb{A}_F^{2n} \setminus \{0\}$$
 with $n \ge 3$;

- $\mathbb{A}_F^2 \setminus \{0\} \sqcup Q_2 \to \mathbb{A}_F^4 \setminus \{0\}$ (and ambient qlc \checkmark);
- $\mathbb{A}_{F}^{n} \setminus \{0\} \sqcup Q_{n} \to \mathbb{A}_{F}^{n + \lfloor \frac{n}{2} \rfloor + 1} \setminus \{0\}$ with $n \geq 3$;
- $Q_2 \sqcup Q_2 \to \mathbb{A}^4_F \setminus \{0\}$ (and ambient qlc \checkmark);
- $Q_n \sqcup Q_n \to \mathbb{A}_F^{n+\lfloor \frac{n}{2} \rfloor+1} \setminus \{0\}$ with $n \ge 3$;

▲日▼▲□▼▲目▼▲目▼ ヨーのなの

•
$$\mathbb{A}_{F}^{n} \setminus \{0\} \sqcup \mathbb{A}_{F}^{n} \setminus \{0\} \to \mathbb{A}_{F}^{2n} \setminus \{0\}$$
 with $n \geq 2$ (and ambient qlc \checkmark);

•
$$\mathbb{A}_F^n \setminus \{0\} \sqcup Q_n \to \mathbb{A}_F^{2n} \setminus \{0\}$$
 with $n \ge 3$;

- $\mathbb{A}_F^2 \setminus \{0\} \sqcup Q_2 \to \mathbb{A}_F^4 \setminus \{0\}$ (and ambient qlc \checkmark);
- $\mathbb{A}_{F}^{n} \setminus \{0\} \sqcup Q_{n} \to \mathbb{A}_{F}^{n+\lfloor \frac{n}{2} \rfloor+1} \setminus \{0\}$ with $n \geq 3$;
- $Q_2 \sqcup Q_2 \to \mathbb{A}^4_F \setminus \{0\}$ (and ambient qlc \checkmark);
- $Q_n \sqcup Q_n \to \mathbb{A}_F^{n+\lfloor \frac{n}{2} \rfloor+1} \setminus \{0\}$ with $n \ge 3$;
- $Q_n \sqcup Q_n \to Q_{n+\lfloor \frac{n}{2} \rfloor+1}$ with $n \ge 5$.

<□> <同> <同> < 回> < 回> < 回> < 回> < 回> < 0 < 0

•
$$\mathbb{A}_{F}^{n} \setminus \{0\} \sqcup \mathbb{A}_{F}^{n} \setminus \{0\} \to \mathbb{A}_{F}^{2n} \setminus \{0\}$$
 with $n \ge 2$ (and ambient qlc \checkmark);
• $\mathbb{A}_{F}^{n} \setminus \{0\} \sqcup Q_{n} \to \mathbb{A}_{F}^{2n} \setminus \{0\}$ with $n \ge 3$;

• $\mathbb{A}_F^2 \setminus \{0\} \sqcup Q_2 \to \mathbb{A}_F^4 \setminus \{0\}$ (and ambient qlc \checkmark);

•
$$\mathbb{A}_{F}^{n} \setminus \{0\} \sqcup Q_{n} \to \mathbb{A}_{F}^{n+\lfloor \frac{n}{2} \rfloor+1} \setminus \{0\}$$
 with $n \geq 3$;

•
$$Q_2 \sqcup Q_2 \to \mathbb{A}_F^4 \setminus \{0\}$$
 (and ambient qlc \checkmark);

•
$$Q_n \sqcup Q_n \to \mathbb{A}_F^{n+\lfloor \frac{n}{2} \rfloor+1} \setminus \{0\}$$
 with $n \ge 3$;

•
$$Q_n \sqcup Q_n \to Q_{n+\lfloor \frac{n}{2} \rfloor+1}$$
 with $n \ge 5$.

In the cases $Q_n \sqcup Q_n \to Q_{n+\lfloor \frac{n}{2} \rfloor+1} = X$ with $n \in \{2,3,4\}$, the only conditions which are not verified are the ones which are there to ensure the existence of Seifert classes $(H^c(X, \underline{K}_{j_1+c}^{MW}) = 0 \text{ and } H^c(X, \underline{K}_{j_2+c}^{MW}) = 0)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへの

Examples of $Q_2 \sqcup Q_2 o \mathbb{A}_F^4 \setminus \{0\}$ $(j_1 = -1 = j_2)$

Assume $F \neq \mathbb{Z}/2\mathbb{Z}$. Let $a \neq b \in F^*$. $Z_1 = \{xy = z(z+1), t = a\}$ and $Z_2 = \{xy = z(z+1), t = b\}$ are of ambient quadratic linking degree 0 and of quadratic linking degree (0, 0).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへで

Examples of $Q_2 \sqcup Q_2 o \mathbb{A}_F^4 \setminus \{0\}$ $(j_1 = -1 = j_2)$

Assume $F \neq \mathbb{Z}/2\mathbb{Z}$. Let $a \neq b \in F^*$. $Z_1 = \{xy = z(z+1), t = a\}$ and $Z_2 = \{xy = z(z+1), t = b\}$ are of ambient quadratic linking degree 0 and of quadratic linking degree (0,0).

Assume the characteristic of F to be different from 2 and 3. $Z_1 = \{xy = z(z+1), t = 1\}$ and $Z_2 = \{xy = t(t+1), z = 2\}$ (with the orientation classes and parametrisations which you can guess) are of ambient quadratic linking degree 0 and of quadratic linking degree $(-1, -1) \in W(F) \oplus W(F)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Examples of $Q_2 \sqcup Q_2 ightarrow Q_4$ $(j_1 = -1 = j_2)$

For both examples, assume F of characteristic different from 2. Recall that $Q_4 = \text{Spec}(F[x_1, y_1, x_2, y_2, z]/(x_1y_1 + x_2y_2 - z(z+1))).$

イロト イポト イヨト イヨト 二日

Examples of $Q_2 \sqcup Q_2 \rightarrow Q_4$ $(j_1 = -1 = j_2)$

For both examples, assume F of characteristic different from 2. Recall that $Q_4 = \text{Spec}(F[x_1, y_1, x_2, y_2, z]/(x_1y_1 + x_2y_2 - z(z+1))).$

 $Z_1 = \{x_1y_1 = z(z+1), x_2 = 1\}$ and $Z_2 = \{x_1y_1 = z(z+1), x_2 = -1\}$ are of quadratic linking degree (0, 0).

イロト イポト イヨト イヨト 二日

Examples of $Q_2 \sqcup Q_2 \rightarrow Q_4$ $(j_1 = -1 = j_2)$

For both examples, assume *F* of characteristic different from 2. Recall that $Q_4 = \text{Spec}(F[x_1, y_1, x_2, y_2, z]/(x_1y_1 + x_2y_2 - z(z+1))).$

 $Z_1 = \{x_1y_1 = z(z+1), x_2 = 1\}$ and $Z_2 = \{x_1y_1 = z(z+1), x_2 = -1\}$ are of quadratic linking degree (0, 0).

 $Z_1 = \{x_1y_1 = (z-1)z, y_2 = 1\}$ and $Z_2 = \{x_1y_1 = (z+1)(z+2), x_2 = 1\}$ (with the orientation classes and parametrisations which you can guess) are of quadratic linking degree $(\langle 2 \rangle, \langle 2 \rangle) \in W(F) \oplus W(F)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Thanks for your attention!

3

イロト イヨト イヨト イヨト