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Introduction

Statement of the conjectures

Let X be a smooth projective variety of dimension d over a finite field Fq. The Weil conjectures
are four statements about the zeta function of X, a formal power series with rational coefficients
defined as follows:

ZX(t) = exp

 ∑
m≥1

Nm
tm

m

 ,

where Nm = #X(Fqm).

(1) Rationality: there exist polynomials P0(t), . . . , P2d(t) ∈ Z[t] such that

ZX(t) = P1(t)P3(t) . . . P2d−1(t)
P0(t)P2(t) . . . P2d(t)

with P0(t) = 1− t and P2d(t) = 1− qdt.

(2) Functional equation: ZX(t) satisfies the functional equation

ZX

(
1

qdt

)
= ±q

dχ
2 tχZX(t)

where χ = (X ·X) is the intersection number of X with itself inside X ×X.

(3) Betti numbers: Suppose that there exists a number field K and a smooth, proper variety Y

defined over OK with fiber Yp
∼= X at a prime ideal p and write Pr(t) =

∏βr

i=1(1 − αr,it).
Then the r-th “topological” Betti number of YC coincides with its étale counterpart, i.e. the
dimension of Hr(X,Qℓ) (which in turn coincides with βr).

(4) Riemann hypothesis: The numbers αr,i are algebraic integers, all of whose conjugates have
absolute values qr/2.
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Connection to algebraic topology

For a variety X over Fq, the fixed points of the m-th power of the Frobenius map Φm are precisely
the Fqm-valued points of X. Therefore, it makes sense to study the Frobenius endomorphism, and
more precisely, to look at its action on the cohomology of X, as the case of complex manifolds
suggests. Indeed, in order to study such spaces one usually works with their homological properties:
if X is a complex manifold of dimension d, then one defines its cohomology algebra

H•(X) :=
⊕

i

Hi(X),

which is a graded algebra defined over a field K of characteristic 0. This algebra has the following
properties:

(1) (a) Each Hi(X) is a finite dimensional K-vector space, and they are 0 unless 0 ≤ i ≤ 2d.
(b) We have a natural isomorphism H2d(X) ∼= K, and the multiplication of H•(X) should

give an identification
H2d−i(X) ∼−→ HomK(Hi(X), K).

This is known as Poincaré duality.
(c) For any two manifolds X, Y , we have an isomorphism of graded algebras (known as the

Künneth formula):
H•(X)⊗H•(Y ) ∼−→ H•(X × Y )

(2) For any morphism f : X → X, we get natural linear maps f (i) : Hi(X) → Hi(X) which give
a homomorphism of graded algebras f• : H•(X) → H•(X). The set of the fixed points of f

is the projection onto X of the intersection of Γf (the graph of f) and ∆ (the diagonal) in
X ×X. If Γf and ∆ intersect transversally at each point, then the number of fixed points of
f is given by the following Lefschetz trace formula:

N =
2d∑

i=0
(−1)iTr(f (i)),

where Tr(f (i)) stands for the trace of the K-endomorphism f (i).

(3) If Y is a submanifold of X of dimension d − 1, then there exist natural linear mappings
Hi(X)→ Hi(Y ), which are bijective for i ≤ d− 2 and injective for i = d− 1.

If we now return to the case where X is an algebraic variety over Fq, and we assume that such
a graded algebra H•(X) can be constructed with the previous properties (and some more), then, as
previously mentioned, we can use it to deduce information about the Frobenius maps Φm. If {αij}j

is the set of eigenvalues of Φ(i), the Lefschetz trace formula implies that

Nm =
∑

i

(−1)i
∑

j

αm
ij .
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From an elementary computation, it follows that we can write the zeta function of X as follows:

ZX(t) = P1(t)P3(t) · · ·P2d−1(t)
P0(t)P2(t) · · ·P2d(t) ,

where the Pi(t) are the characteristic polynomials of Φ(i), which have integer coefficients. By similar
arguments one can obtain the functional equation, but the analog of the Riemann hypothesis does
not follow formally from these cohomological properties: as we will see, one needs a more intricate
argument, which was first shown by Deligne.

Why étale cohomology?

Now it is clear that we would like to construct a cohomology theory with the above properties. A
first candidate could be to take the cohomology of X as a topological space, but this doesn’t give
the correct answer. Indeed, the following theorem holds:

Theorem 1. If X is an irreducible topological space, then Hr(X,F) = 0 for all r > 0 and all
constant sheaves F .

The issue is that the Zariski topology is too coarse. The key insight of Grothendieck was to
realize that to give a sheaf on X, i.e. a contravariant functor

F : XZar → Set

from the category of open subsets of X which possesses some gluing properties, one only needs to
know what the open coverings are. Then, instead of refining the topology of X, we can consider
functors

F : Xet → Set

on the category of étale maps to X: such morphisms play the role of open subsets. An étale sheaf is
a functor of this form which satisfies some similar gluing properties, where now a covering of an étale
map Y → X is a family {Yi → X}i in Xet with morphisms Yi

φi−→ Y which are jointly surjective
and such that

Yi Y

X

φi

commutes for all i.
Étale sheaves form an abelian category and we can perform all the operations needed to define

the usual sheaf cohomology in this new setting. This produces a cohomology theory, which we
write as Hr(Xet,F) and which behaves nicely when working with torsion coefficients (e.g. constant
sheaves of the form Z/nZ). Sadly, it is not so ideal when we try to work with coefficients of the form
Zℓ or Qℓ. Since we want our cohomology algebra to be defined over a field of characteristic zero, we
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are lead to give some ad hoc definitions:

Hr(Xet,Zℓ) := lim←−
n

Hr(Xet,Z/ℓnZ), and Hr(X,Qℓ) := Hr(X,Zℓ)⊗Zℓ
Qℓ,

and instead work with these groups.

An application: the Ramanujan conjectures

The Weil conjectures have a wide range of deep consequences, and as an example, we are going to
present Deligne’s proof of the Ramanujan conjecture, concerning the growth of the coefficients of
the Fourier expansion of the discriminant modular form

∆(z) = q
∏
n≥1

(1− qn)24 =
∑
n≥1

τ(n)qn

(here q = e2πiz is not the cardinality of any finite field!). The conjecture affirms that for any prime
number p one has |τ(p)| < 2p11/2, or equivalently that the roots of the polynomial

Hp(X) = 1− τ(p)X + p11X2

have absolute value p−11/2. The strategy of the proof is first to find a suitable two dimensional Galois
representation Wℓ of Gal(Kℓ/Q) such that Hp(X) = det(1 − FpX; Wℓ), where Kℓ is the maximal
extension of Q unramified outside of ℓ and Fp is the inverse of the Frobenius at p, for p ̸= ℓ. Now,
Wℓ is related to the cohomology of the moduli space of elliptic curves with some level structure and
the Riemann hypothesis tells us the absolute values of the eigenvalues of the Frobenius action.

Talks

Here is the list of the talks, with an outline and some brief descriptions of the things you should
cover. The main reference for the seminar are the notes by Milne [Mil], but they don’t have all of
the details: you are welcome to also read the book by Milne [EC] or the one by Freitag and Kiehl
[FK]. The numbers inside the square brackets next to the titles of the talks indicate which chapters
of [Mil] are covered in the talk.
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1 Étale cohomology

Talk 1 (11 October): Introduction

In this talk we introduce the subject of the seminar, give a sketch of what we are going to learn and
try to find volunteers for the talks without a speaker already.

Talk 2 (18 October): Étale morphisms [2, 3, 4]

The topic of this talk are étale morphisms of schemes: these are some kind of morphisms at the
basis of étale cohomology, and they will take the place that open immersions have in the Zariski
topology.
As a guideline for this talk, the idea is to first give the important definitions for the case of varieties
over fields, and then generalize them to schemes.

• Following the start of [Mil, Chapter 2], discuss briefly the definition of étale morphisms between
varieties (you are welcome to not give all of the details). Afterwards, give the definition of flat,
unramified and étale morphisms between arbitrary schemes, and maybe mention that these
two notions of étale maps agree over algebraically closed fields. State the first basic properties
of étale morphisms: [Mil, Prop. 2.11, 2.12, 2.14]. If there is enough time, mention as well [Mil,
Cor. 2.16].

• Next, as in the exposition of [Mil, Chapter 3], briefly recall the definition of the topological
fundamental group and its classification of covering spaces. Then, define the étale fundamental
group, state [Mil, Thm. 3.1] and explain some of the examples in the sections (fields, A1 and
Pn).

• Discuss the idea of local rings for the étale topology in the case of varieties, as in the start of
[Mil, Chapter 4]. Prove [Mil, Prop. 4.1]. Define Henselian rings, and state [Mil, Thm. 4.4,
Thm. 4.5] without proof. Similarly explain Henselizations, and state [Mil, Cor. 4.14]. Finish
the discussion about varieties by defining strict Henselian rings and strict Henselizations as in
[Mil, Def. 4.18] and the discussion before it. Finally, finish the talk by giving the definition
for the local ring for the étale topology for schemes as in the end of the chapter.

Talk 3 (25 October): Étale sheaves [5, 6, 7, 8]

In this talk we will introduce sites, which give a more general context for sheaf theory than usual
topological spaces: the main idea is to replace the category of open subsets of a space X by any
category with a notion of coverings for objects. Our particular interest will be in étale coverings,
consisting of étale morphisms of schemes. Then, we will construct sheaves on this site, and study
their properties.
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• Define sites and sheaves as in [Mil, Chapter 5] and give the examples of the Zariski, étale (big
and small) and flat sites.

• Define and discuss Galois coverings. Prove [Mil, Prop. 6.6], then discuss the following examples
of étale sheaves: the structure sheaf on Xet, the sheaf induced by a quasi coherent OX -module,
representable sheaves and the sheaves on Spec(k). Define the stalk of a sheaf and give examples.
Also define skyscraper and locally constant sheaves and prove [Mil, Prop. 6.16].

• State that the category of presheaves on Xet is abelian, explain how exactness works in Sh(Xet)
stating [Mil, Lemma 7.4, 7.5] (proving at least (b) ⇒ (a) of 7.4) and state that étale sheaves
form an abelian category as well. Give the example of the Kummer sequence. Define and state
the existence of sheafification for étale presheaves.

• Define the direct image of sheaves, proving [Mil, Prop. 8.3, Cor. 8.4] and give one (or more) of
the examples in [Mil, Ex. 8.5]. Discuss the inverse image of sheaves, mentioning that it is the
right adjoint of restriction along étale maps and [Mil, Rem 8.9], and prove [Mil, Prop. 8.12].
Finally define extension by zero and state the results of the section, proving [Mil, Prop. 8.15].

Talk 4 (8 November): Étale cohomology [9, 10, 11, 12, 13]

Using the notion of étale sheaves from the previous talk, we can define étale cohomology, following
the ideas behind sheaf cohomology. Then, we compute the étale cohomology of Gm.

• Define étale cohomology and state its first properties, proving the dimension, exactness and
excision axioms (avoid the homotopy axiom if you want).

• Define Čech cohomology and state [Mil, Thm. 10.2, Prop. 10.6, Thm. 10.9]. Try to briefly
explain what spectral sequences are and state [Mil, Thm. 10.7]. For a reference for spectral
sequences, you may check [Huy, Section 2.3] or [EC, Appendix B].

• State that the first cohomology group of Gm on a scheme X is canonically isomorphic to the
Picard group of X, [Mil, Cor. 11.6]. Decide if and how much you want to prove of it.

• Talk about the higher direct images of sheaves and the Leray spectral sequence, following [Mil,
Chapter 12].

• Prove the Weil-Divisor exact sequence for the étale topology and use it to compute the étale
cohomology of Gm on a curve: specifically, prove [Mil, Prop. 13.4, Thm. 13.7] (decide how
much of the auxiliary results you want to prove).
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Talk 5 (15 November): The cohomology of curves and purity [14, 15, 16]

The two main results of this talk will be Poincaré duality for curves and the existence of the Gysin
sequence. Poincaré duality gives a perfect pairing between suitable cohomology groups, and it will
be one of the key tools to prove the Weil conjectures.
Somewhat unrelated, cohomological purity is a more technical result that implies the existence of
the so called Gysin map, which in turn will be used for the definition of the cycle map.

• Discuss the structure of the Picard group of a curve and use it to compute the cohomology of
µn. Define cohomology with compact support following [Mil, Def. 18.1], and compute it for
µn. Next sketch the proof of Poincaré duality for curves: you should state [Mil, Thm. 14.20]
(using the general definition of constructible sheaves), explain how the pairing is defined and
why Extr

U (F , µn) ∼= Hr(Uet, F̌(1)). Then give the proof of [Mil, Thm. 14.7], which is only for
locally constant sheaves, and say how to obtain 14.20 from 14.7. You can find a more detailed
and complete proof in [EC, V, Chapter 2] if you are not satisfied with the sketch in the notes.

• In the proof of Theorem 14.7 you will need to know that cohomology of curves vanishes in
degree higher than 2: this is a special case of [Mil, Thm. 15.1], which you should state (prove
it only if you think you have enough time).

• Prove the existence of the Gysin sequence following Milne’s exposition and explain [Mil, Ex.
16.3, 16.4].

Talk 6 (22 November): Proper base change and applications [17, 18, 19]

The main result of this section is the base change theorem for proper morphisms, which we will use
to define cohomology with compact support and ℓ-adic cohomology.

• Follow [FK, I, Chapter 6], which reduces the proof to two cases: try to give the details of case
(2), while discuss case (1) only if you have time. The proof relies on some results that we may
not be able to cover, you can decide what to explain and what to blackbox.

• Define cohomology with compact support and prove [Mil, Prop. 18.2, 18.3]. Define the higher
direct images with compact support and state [Mil, Prop. 18.4].

• Introduce sheaves of Zℓ-modules, giving motivation for their construction, and prove [Mil,
Thm. 19.2]. Define sheaves of Qℓ-modules.

Talk 7 (29 November): Smooth base change, Künneth formula, Cycle map [20, 22, 23]

The objective of this talk is to cover three crucial results for the proof of the Lefschetz fixed-point
formula. The first is smooth base change, compares the higher direct images of a sheaf in a cartesian
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diagram (provided one of the two starting maps is smooth). Next, we prove the Künneth formula,
which express the cohomology of a product in terms of the cohomology of the factors. Lastly, we
define the cycle map, which is a way to associate a cohomology class to an algebraic cycle.

• State the smooth base change theorem and give a sketch of its proof: here is an approach
following Chapter VI of [EC]. State [EC, Thm. 4.1], explain that the theorem holds for
universally locally acyclic morphisms ([EC, Prop. 4.10]) and that smooth morphisms satisfy
this condition ([EC, Thm. 4.15]). Next prove [EC, Cor. 4.2], which gives a comparison of the
cohomology of the fibers of a proper and smooth morphism. Finally explain [EC, Rem. 4.21].

• Define the cup product and prove the Künneth formula [Mil, Thm. 22.1].

• Define the cycle map following the first definition in [Mil, Chapter 23], and state properties
(a) and (b) before [Mil, Thm. 23.4]. In order to make sense of these properties, you should
introduce the Chow ring, which is the quotient

CH∗(X) := C∗(X)/(rational equivalences),

since C∗(X) is not a ring under the intersection product. For more details, you can look at
[EC, §VI, Chapter 9].

Talk 8 (6 December): Poincaré duality and the Lefschetz fixed-point formula [24, 25]

In this talk we will see the proof of the two main ingredients for the proof of the first three of the
Weil conjectures, namely Poincaré duality and the Lefschetz fixed-point formula.

• Prove Poincaré duality, following the exposition of [EC]. When proving [EC, Lemma 11.3]
explain in detail how to get the map π : X → S. The proof of the theorem is divided into
seven steps: feel free to skip the proof of step 4 as it is a bit technical, but try to explain in
detail step 5 since it is the key point of the proof, where the induction argument is used.
Next state [Mil, Rem. 24.2], explaining especially points (b), (c) and (e), which will be used
in the proof of the Lefschetz formula.

• Prove the Lefschetz fixed-point formula [Mil, Thm. 25.1].

Note: In the proof of the Lefschetz fixed-point formula, you will work with ℓ-adic cohomology, but
our previous results were only proven for torsion coefficients. You should explain, at least in one
instance, how to obtain the analogous result for ℓ-adic cohomology from the torsion case.
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2 Proof of the Weil conjectures

Talk 9 (20 December): Proof of the Weil conjectures (I) [26, 27, 28]

The goal of this talk is to prove the Weil conjectures except for the Riemann hypothesis. As we will
see, the proof is an easy consequence of Poincaré duality and of the Lefschetz fixed-point formula.

• Recall the statement of the conjectures as in [Mil, Chapter 26] and then give the proof of
the rationality of the zeta function, its functional equation and the comparison between Betti
numbers, following [Mil, Chapter 27].

• We now start the proof of the remaining conjecture: prove [Mil, Prop. 28.3], which reduces the
proof of the Riemann hypothesis to the case of the middle cohomology of an even dimensional
variety.

Talk 10 (10 January): The Main Lemma [29, 30]

Before proving the missing conjecture, we need an intermediate result called the main lemma, to
which we dedicate this talk.

• State [Mil, Thm. 29.4], which gives a Lefschetz fixed-point type formula for non constant
sheaves of Qℓ-modules. Explain how to deduce it from [Mil, Thm. 29.15], which is an analogous
result for sheaves of Z/nZ-modules, and prove this theorem. Then define the zeta function of
a locally constant sheaf of Qℓ-modules and explain how to obtain [Mil, Thm. 29.6].

• State and prove the main lemma [Mil, Thm. 30.6].

Talk 11 (17 January): Proof of the Weil conjectures (II) [31, 32, 33]

Finally, we can prove the Riemann hypothesis for varieties over Fp, hence concluding the proof of
the Weil conjectures.

• Introduce Lefschetz pencils, sketching the proof of their existence and of [Mil, Thm. 31.3],
which says that up to birational equivalence any variety can be fibered over P1 via a map
π : X → P1 with nice fibers.

• Next, we want to understand the higher direct images of Qℓ, as a Qℓ-module on X, under π:
this is done in [Mil, Chapter 32].

• Complete the proof of the Weil conjectures following [Mil, Chapter 33].
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3 An application of the Weil conjectures

The reference for the last two talks is the original paper by Deligne [Del]. However, the subdivision
of the material is not definitive yet, as we are still trying to understand the argument and how to
divide it in two talks. Nevertheless, the rough idea at the moment is to cover most of the background
material in the first talk, while the proof and some (eventual) auxiliary results left to discuss will
be treated in the second one. Also, for those of you who don’t like french papers written in the
70’s, there is an English translation which seems decently accurate and which you can find on the
webpage of the seminar.
Here is a very vague and not definitive description of the talks.

Talk 12 (24 January): Ramanujan conjecture (I)

Discuss sections 2 and 3 of [Del], where most of the preparatory material for the proof is introduced.

• The Shimura isomorphism [Del, Thm. 2.10]

• The fundamental ℓ-adic representation Wl, [Del, Def. 3.9]

• Hecke operators (??)

Talk 13 (31 January): Ramanujan conjecture (II)

Prove the congruence formula and explain how to obtain Ramanujan’s conjecture from the Weil’s
conjectures.

• The congruence formula [Del, Them 4.9]

• Weil implies Ramanujan
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