Babyseminar WS 2023-24 - Talk 2
E'tale maphims
\& 1 Detinitions \& finst purpenties
Fix $k=k^{a l}$ aly. losed field and let $\varphi: W \rightarrow V$ be a maphirm of nonsingular algetbaic varietres $/ k$.
Det: $(i) \varphi$ is étale at $Q \in W$ if the map $d \varphi_{Q}: \operatorname{Tg}_{Q}(W) \rightarrow \operatorname{Tg}_{\varphi(Q)}(V)$ is an isomuphirm (of k vect. opuees)
(ii) φ is étale if it is citale at every point of W

Ex: Assume that locally Y conesponds to a map of reduced k-uly. of finite type $F: A \rightarrow B=\frac{A[X]}{(g(x))} \quad g(X) \in A[x]$ monic pulynomial with $A=\frac{k\left[Y_{1},-Y_{m}\right]}{I} \quad I=\sqrt{I}=\left(f_{1}, \ldots, f_{n}\right)$

$$
\Rightarrow B=\frac{k\left[Y_{1},-Y_{m}, X\right]}{(g(X))+I}
$$

If $Q \in \operatorname{Spm}(B)$ is of the form $Q=\left(y_{1}, \ldots y_{m} ; x\right) \quad$ then $\varphi(Q)=\left(y_{1}, \ldots y_{m}\right) \in \operatorname{Spm}(A)$

An explicit description of $d \varphi_{Q}$ is as follows:

$$
\begin{aligned}
& T_{g_{Q}}(w) \triangleq\left\{\left(a_{1}, \ldots, a_{m} ; b\right) \in R^{m+1}\right. \\
& \left\{\begin{array}{l}
\sum_{i=1}^{m} \frac{\partial f_{j}}{\partial y_{i}}(\varphi(\psi)) \cdot a_{i}=0 \quad j=1-r \\
\sum_{i=1}^{m} \frac{\partial g}{\partial y_{i}}(Q) \cdot a_{i}+\frac{\partial g}{\partial x}(\alpha) \cdot b=0
\end{array}\right\} \\
& d \varphi_{u} \text { pujection outo the finst } \\
& m \text { condinates } \\
& T_{\varphi(\varphi)}(V) \cong\left\{\left(a_{1,-,}, a_{m}\right) \in k^{m} \left\lvert\, \sum_{i=1}^{m} \frac{\partial f_{j}}{\partial Y_{i}}(\varphi(Q)) \cdot a_{i}=0 \quad j=1-r\right.\right\}
\end{aligned}
$$

Hence φ étale at $Q \Leftrightarrow \frac{\partial g}{\partial x}(Q) \neq 0$

Now we try to genembise the notwen of etale mesphom to rchemes
Recall: a muphoron of schemes $\varphi: Y \rightarrow X$ is flat if $\varphi_{y}^{*}: O_{X, \varphi(y)} \rightarrow O_{y, y}$ is flat $\forall_{y \in Y}$
Ruhk:i)since a my ham $A \stackrel{f}{\leftrightarrows} B$ is flat iff $A_{f^{-1}(m)} \rightarrow B_{m}$ flat $\forall m \in$ Spec (B) max.mal idenl, flatuess of φ can be checked at cloted pornt's
(ii) manally, to give a flat muphom $\varphi: Y \rightarrow X$ of vaveties ooer K correppuads to givry a "continuous family" of vaveties $\left\{Y_{x}=\varphi^{-1}(x)\right\}_{x \in} X$
1! Fromn wow on all angs are noetheram and all schemes are (locally) noetheran
Def (i) A locul homomuplusn of local wys $\quad f: A \rightarrow B$ is unramified if
(a) $f\left(m_{A}\right) \cdot B=m_{B}$
(b) $A / m_{A} C B / m_{B}$ finste separable freled ext.
(c) B is essentially of finite type wer A (ie. B locabration of a finite typ A-aly. at $)$
(ii) A maphom $Y: Y \rightarrow X$ of schemes whrch is (lecally) of f.nite type is unramitied if $\forall y, Y \quad O_{x, y(y)} \rightarrow \Theta_{x, x}$ is umanitred

Def A mupheron of schume $\varphi: Y \rightarrow X$ (locally) of finite type is étale if it is flat 4 unramifred.
Proposition 1: It $\varphi: W_{\rightarrow}, V$ is a maphirm of nonsingular vaveties over $k=k^{a l}$, then the two notions of étaleness for φ agree.
Purf (idea) $d \varphi_{Q}:\left(m_{Q} / m_{U}^{2}\right)^{V} \rightarrow\left(m_{\varphi(\alpha)} / m_{\varphi C(\alpha)}^{2}\right)^{V}$ irumaphism $\Leftrightarrow \hat{U}_{V, \varphi(\alpha)} \stackrel{』}{\rightrightarrows}{\hat{U_{W, Q}}}$ (*) Then one is left to prove that:
$\hat{\varphi}_{\psi}: \hat{O}_{V, \varphi(a)} \xrightarrow{\rho} \hat{O}_{W, Q} \Leftrightarrow \varphi_{\alpha}: O_{V, \varphi(\alpha)} \rightarrow ण_{W, Q}$ is fcat and unramified Once proven that φ_{Q} flat and unamiffed $\Rightarrow \hat{\varphi}_{\psi}$ injective, vnnanififed and $\hat{\varphi}_{w, \psi}$ finite as $\hat{O}_{V, Y(Q)}$-aly., the conclusion follous freen Nakayuma's Iamma

Dach (*) defues étaleness at Q for any mapinem $\varphi: W \rightarrow V$ of (possibly singular) varieties

Prepositor 2: (i) open immersions are tale
(ii) being érule is stable under composition and base change
(iii) If $Z \underset{\sim}{\Psi} \underset{\rightarrow}{\varphi} X$ is étale and φ is étale $\Rightarrow \psi$ is étale

Pupposition 3: Let $Y: Y \rightarrow X$ be an etcule muphonm (of finite tyre).
(i) $\forall y \in Y \quad U_{y, y}$ and $U_{X, \varphi(y)}$ have the same kıull dim.
(ii) φ is quari-finite (ie. $H y^{-1}(x)$ finite $\forall x+K$)
(iii) φ is open
(iv) X reduced / namal/reguler $\Rightarrow Y$ is uedned/nranal / regular

Supposition $4: \varphi: Y-x$ muphim of finite type, then
$\{y+Y \mid \varphi$ is étale (re flat and vnrean.) at $y\} \subseteq Y$ is open
Prepositions Consider a diagram $\quad Y \underset{\rightarrow}{q} S$ with p étale and sppanated $\varphi \underset{p}{\nu \varphi_{p}} \quad 4$ connected
If $\exists y+Y$ st $\varphi(y)=\varphi^{\prime}(y)=x$ and the maps $R(x) \rightarrow K(y)$ induced by φ and φ^{\prime} wincide $\Rightarrow \varphi=\varphi^{\prime}$
Poof (ideas) $Y \underset{\left(\underset{\left(1, \varphi^{\prime}\right)}{(1, \varphi)}\right.}{Y} x_{s} x \xrightarrow{P_{y}} y \quad$. Dy italy $\&$ sepmanted

- $(1, \varphi),\left(1, \varphi^{\prime}\right)$ sections of P_{y}

$$
y \text { commuted } \Rightarrow(1, \varphi)=\left(1, \varphi^{\prime}\right) \Rightarrow \varphi=\varphi^{\prime}
$$

Rmk: Locally any ékule muphison of schemes is always "standard étale", ie. of the from
$A \rightarrow \frac{A[x]}{(g(x))}\left[b^{-1}\right] \quad g(x) \in A[x]$ manic

$$
b \in \frac{A[x]}{(g(x))} \text { s.t. } g^{\prime}(x) \in\left(\frac{A[x]}{(g(x))}\left[b^{-1}\right]\right)^{x}
$$

This can be used to give one line poofs of many of the above statements
§ 2. The étale fruclamental grup.
Recull: if X is a (decent) conrected topological space and $x \in X$, one can corstruct the fundamentiul grapp $\pi_{1}(X, x)$ as the gremp of homotopy classes of loop in X based at x.

Thue is a natural isomorphism $\operatorname{Ant}_{x}(\hat{X}) \stackrel{n}{\rightarrow} \pi_{1}(X, x)$ where $(\hat{X}, \hat{x}) \rightarrow(X, x)$ is the so-culled unversal cover of (X, x) and a way of rephrasing this is ar folloms the functor
 of x wth finitely Y mary courrected componentis

$$
\begin{aligned}
& \operatorname{Hom}_{x}(\hat{x}, y) \\
& \alpha * f:=f \cdot \alpha \quad \alpha \in \operatorname{Ant}_{x}(\hat{x}) f: \hat{x}_{>}^{\hat{x}} \rightarrow y \\
& x_{x}^{\alpha}
\end{aligned}
$$

is un equivaleme of categories
Grothendieck's iden: Find am analigge far aly. vaveties/schemes
Rush: it $\varphi: Y \rightarrow X$ whth X conneelced is étale and finike $\Rightarrow \varphi$ open and closed $\Rightarrow \varphi$ smejecture \leadsto, analugue of tinite covering space

One can mimic the tepulegial situation.
Set Fét/x categay objects: fmite étale mapss $Y \rightarrow X$

- muphurms: X-morphims

Fix a geometir point $\bar{x}: \operatorname{Spu}(\Omega) \rightarrow X$, then we get a functen
Fét $/ x \xrightarrow{F}$ sets $F(y \xrightarrow{\varphi} X)=\left\{\begin{array}{c}\bar{y}: \operatorname{sper}(\Omega) \rightarrow Y \\ \bar{x}), \downarrow \\ x\end{array}\right\}=" \varphi^{-1}(\bar{x}) "$

Unlike in the topolegial case, this functer is only pro repusentable i.e. Эpujective syrtem $\left(X_{i},-i X\right)$ irI I diecked set such that

$$
\forall y \xrightarrow[\varphi]{\varphi} x \quad F(y \rightarrow \underset{\infty}{\varphi} x)=\lim _{i \in I} \operatorname{Hum}\left(x_{i}, y\right)
$$

Lef: $\pi_{1}\left(X_{,}, \bar{x}\right):=\lim _{i-i} \operatorname{Aut} X_{X}\left(X_{i}\right)$ étale tundamental garup of X (it is a puctinite gup)
Thenem 5: $(Y \xrightarrow{\varphi}, X) \leadsto F(Y \xrightarrow{\varphi} X)$ defrnes an equivilence of cerkegais

$$
\text { Feit/x } \stackrel{\wedge}{\Longrightarrow} \text { finite discuete } \pi_{1}(X, \bar{x}) \text {-etts }
$$

Examples: (i) $X=\operatorname{Spu}(K) \quad K$ freld $\Rightarrow \pi_{1}(K, \bar{x}) \cong \operatorname{Gal}_{1}\left(K^{\text {sep }}(K)\right.$ where $K \subset K^{a l}$ fixed aly. leosure of K and $K^{\text {sep }}$ squarable closure of K inside $K^{a l}$
In the next cxamples we will need Rremaun-Hurwith fummlen: given a finike senmable muphimn $Y: Y \rightarrow X$ between smoth puij cuwes ooer an dy. Cored foeled k which is tamely rauniffed, it cureds $2 g(y)-2=(\operatorname{deg} \varphi) \cdot(2 g(x)-2)+\sum_{p \in X}\left(e_{p}-1\right) \quad g(-)$ genus, e_{p} ram. index at p
(ii) $X=\mathbb{P}_{k}^{1} \quad k=k^{\text {al }}$ then every finike étale covering $Y \xrightarrow{\varphi} X$ of degree n is y iven by a moth pry curve Y / \mathbb{k}. Ricmann-Hiuwita formulh gives

$$
2 g(y)-2=-2 \cdot n \quad \Rightarrow g(y)=0 \text { and } n=1 \Rightarrow \varphi \text { isomophirm }
$$

$$
\Rightarrow \quad \pi_{1}(X, \dot{x}) \text { thivial. }
$$

(iii) $X=A_{k}^{\prime} k=k^{a l}$, char $k=0$ then every fin:ke étale coveriny $Y_{\rightarrow X} X$ exkends to a map $\bar{Y} \xrightarrow{\bar{y}} \mathbb{P}_{k}^{1}$ where \vec{Y} is a smoth pur, cunve and \bar{Y} can be branched over ∞,
Rremamn- Humwity $\Rightarrow 2 y(\bar{y})-2=-2 \cdot \operatorname{deg}(\varphi)+e_{\infty}-1 \quad e_{\infty}=$ ramification index at ∞

$$
\begin{array}{ll}
\Rightarrow & 2 g(\bar{y})-2 \leqslant-\operatorname{dey} \varphi-1 \\
\Rightarrow & e_{\infty} \leqslant \operatorname{deg}(\varphi) \\
\hline y(\bar{y})=0, \operatorname{deg}(\varphi)=1 \quad e_{\infty}=1 \Rightarrow \varphi \text { iso } \Rightarrow \pi_{1}\left(\mathbb{A}_{k}^{\prime}, \bar{x}\right) t_{1}, v_{1} \varphi
\end{array}
$$

(iv) $X=\mathbb{A}_{n}^{\prime}-\{0\} \quad k=k^{\text {al }} \quad$ chan $k=0$

As befue any finite étale covericy $y \xrightarrow{\varphi} X$ extends to $\bar{Y} \xrightarrow{\varphi} \mathbb{P}_{k}^{\prime}$ \bar{Y} moth jury cure, $\bar{\varphi}$ can be branched war 0 and ∞.
Riemanen-Huwwity gives: $2 g(\bar{Y})-2=-2 d y(\varphi)+e_{0}+e_{\infty}-2$

$$
\begin{aligned}
& \Rightarrow 2 g(\bar{y})-2 \leq-2 \Rightarrow g(\bar{y})=0 \quad \text { and } 2 \operatorname{deg}(\varphi)=e_{0}+e_{\infty} \\
& \Rightarrow \quad 4 \cong X=\mathbb{A}_{k}^{\prime}-h 04 \text { and } \operatorname{deg} \varphi=e_{0}=e_{\infty}
\end{aligned}
$$

so $\varphi: \mathbb{A}_{n}^{\prime} \backslash\{0\} \rightarrow \mathbb{R}_{k}^{\prime} \backslash\{0\}$ of clog $\varphi=a$ conespunds to $t 1 \rightarrow a \cdot t^{ \pm n} c \in R^{x}$

$$
\operatorname{Aut}_{x}\left(X \underline{\varphi}_{-1} X\right) \stackrel{\mu_{n}}{ }(k) \Rightarrow \pi_{1}(X, \bar{x}) \cong \hat{\not}
$$

NB: (iii) \& (iv) change in char >0; KEY word: Action-Schneren
Therm If X is a smooth all. vavety cover \mathbb{C} then 3 natural ito

$$
\pi_{1}^{\text {et }}(X, \bar{x}) \triangleq \pi_{1}^{\text {top }}(\underbrace{\left.X^{\text {an }}, x\right)^{\wedge} \sim \text { popinite completion }}_{\text {complex topuliory }}
$$

§ 3. Henselian rings
Def: A local ring $\left(A, m_{A}\right)$ is henselian if, for every $f(t) \in A[t]$ manic polynem, al, if the image $\bar{f}(t) \in A / m_{A}[t]$ admit's a facter.aation $\bar{f}=g_{0} \cdot h_{0}$ with g_{0}, h_{0} manic and s.t. $\left(g_{0}, h_{0}\right)=1$, then $\exists g_{,}, h \in A[t]$ monic s.t. $f=g \cdot h$ and $\bar{g}=g_{0}, \bar{h} s h_{0}$.
Run: g, h in the above definition are unique and coprime in $A[t]$ Ex. $\left(A, m_{A}\right)$ complete local nny $\Rightarrow(A, m A)$ henseban (Hensel's lemma) Proposition 7: Let $\left(A, m_{A}\right)$ be a local ring with residue fold $R_{A}=A / m A_{1}$; THE (i) $(A, M A)$ henselian
(ii) If any $f(t) \in A[t]$ not nee manse is such that $\bar{f}<g_{0} \cdot h_{0}$ w. th gomonic and $\left(g_{0}, h_{0}\right)=1 \Rightarrow t=g h$ with g manic, $\bar{g}=g_{0}, \bar{h}=h_{0}$
(iii) given $f_{1}, \ldots, f_{n} \in A\left[T_{1}-T_{n}\right]$, every common tero $\underline{x}_{0}+\left(\mathbb{R}_{A}\right)^{n}$ of the $\bar{f}_{:}^{\prime}$'s such that $\operatorname{JaC}\left(\bar{f}_{1}, \ldots, \bar{f}_{n}\right)\left(\underline{x}_{0}\right) \in G L_{n}\left(R_{A}\right)$ lifts to a common tero of the f_{i} 's in A^{n}
(iv) If B is an étcule A-algetom and $B / m_{A} \cdot B \cong k_{A} \times \bar{B}$ farsome k_{A}-algetran \bar{B}^{\prime} then \exists a decompurition $B \cong A \times B^{\prime} \quad B^{\prime} A$-aly litting the decompusiton $B / m_{A} B \equiv R_{A} \times \bar{B}^{\prime}$
Proof: Omithed (see Milne, prop. 4.11)
Def: Let $\left(A, M A\right.$) be a locul ring. A muphirm of lecal anongs $A \rightarrow A^{h}$ with A^{h} henseban is called henselization if it satisfies the univ. moperty:

$$
\begin{gathered}
A \underset{\vec{v}}{\forall} B \text { henselan } \\
A^{h} \exists!
\end{gathered}
$$

Prop oritum 8 (i) $A^{h} \hat{\underline{\lim }} B$ where the limit is wer paiss $(B, 9)$ $(\overrightarrow{B, A})$
where B is an étate A-algelnas and $q \in \operatorname{Spec}(B)$ st $q \cap A=m_{A}$ and $A / M_{A} \rightarrow B / q$ iso
(ii)

$$
\begin{aligned}
A^{h} \cong & \bigcap B \\
& \cap \subseteq B \subseteq \hat{A} B \text { cool hervelan } \\
& m_{A} \subseteq m_{B} \subseteq \hat{m}_{A}
\end{aligned}
$$

A\&fi)A Weal ling $(A, M A)$ is strictly henselian if t is henseban and its ues.due freed is sepanably closed.
(ii) A stricthenselization of $(A, m A)$ is a maphiran of lecal nougs $A-A^{\text {th }}$ st. $\left(A^{\text {sh }}, m_{A} A^{t h}\right)$ is strictly hensebian such that ever leacal muphrom $A \rightarrow B$ wth w.th (B, m_{B}) strictly henselian factus throrgh $A^{\text {th }}$, whth factuization uniquely determined by the extensin of residue fielels $A^{s s /} / \mathrm{m}_{A}^{\text {th }} \rightarrow B / \mathrm{MB}_{B}$.

Ex: $A=\mathbb{Z}_{p} \leadsto$ can choose $A^{\text {th }}=W\left(\overline{\mathbb{F}}_{p}\right)$ (Witt vectur)
Rmy Unilie henselization, strict hewcelisation is NOT unsque up to unsque isom.
§ 4. The locul vine fu the étale topulogy
X icheme, $\bar{x}: \operatorname{Spec}(\Omega) \rightarrow X$ geometir point $\left(\Omega\right.$ separably clured) $\left.\begin{array}{c}\text { ficld }\end{array}\right)$
Aff(i) An étale neighbounhood of \bar{x} is anair $(U \rightarrow X, \bar{u})$ where $U \rightarrow X$ étale and
$\bar{u}: \operatorname{Spec}(\Omega) \rightarrow U$ yever. point s.t. Spec $(\Omega) \xrightarrow{\bar{u}} U$

$$
\bar{x})^{2} x^{\downarrow}
$$

(:?) the local ring at \bar{x} fer the itale topoligy is
 U conneeted and affine

Propositiong If $x \in x$ is the imange of \bar{x}, then $\mathcal{O}_{x, \bar{x}} \cong O_{x, x}$ Proof: Omitted

