Babyseminar WS 2023-24 - Talk 2

EX: Assume that locally of corresponds to a map of reduced k-ulg. If
finite type
$$F: A \rightarrow B = A[X] = g(x) \in A[X]$$
 monic pulynomial

with
$$A = \frac{k[Y_{1}, -Y_{m}]}{I}$$
 $T = \sqrt{I} = (f_{1}, ..., f_{n})$

$$= \beta B = k[Y_{1}, -Y_{m}, X]$$

$$= \frac{(g(x)) + I}{(g(x)) + I}$$

$$T = \sqrt{I} = (f_{1}, ..., f_{n})$$

$$If (Q(Spm(B)) = (g_{1}, ..., g_{m}) = Spm(A)$$

An explicit description of dy is as follows:

Ty
$$q(W) \stackrel{\wedge}{=} \int (a_{i,...,}a_{m;b}) \in \mathbb{R}^{m+1}$$

 $\int \frac{\sum_{i=1}^{m} \frac{\partial f_{j}}{\partial Y_{i}}(q(u)) \cdot a_{i} = 0 \quad j=1-n}{\sum_{i=1}^{m} \frac{\partial g}{\partial Y_{i}}(Q) \cdot a_{i} + \frac{\partial g}{\partial X}(Q) \cdot b = 0}$
 $\int \frac{\partial g}{\partial Y_{i}}(Q) \cdot a_{i} + \frac{\partial g}{\partial X}(Q) \cdot b = 0$

$$Tg_{\varphi(Q)}(V) \ge d(a_{i,...,}a_{m}) \in \mathbb{R}^{m} \left\{ \sum_{i=1}^{m} \frac{\partial f_{i}}{\partial Y_{i}}(\varphi(Q)) \cdot a_{i} = 0 \quad j=1-n \right\}$$

Hence φ étale at $Q \iff \frac{\partial g}{\partial X}(Q) \neq 0$

12mh (*) defines étaleners at & for any monorthmen q'W -> V of (possibly singular) var; et : es

Proposition 2:(i) open immensions are itale
(ii) being itale is stable under composition and base change
(iii) IF
$$Z \exists Y \exists X$$
 is étale and q is étale $\Rightarrow \forall$ is étale
(iii) IF $Z \exists Y \exists X$ is étale and q is étale $\Rightarrow \forall$ is étale
(iii) IF $Z \exists Y \exists X$ is étale and q is étale $\Rightarrow \forall$ is étale
(iii) $\forall y \notin Y = 0$ Y, y and $0_{X, q(y)}$ have the same knull dim.
(i) $\forall y \notin Y = 0$ Y, y and $0_{X, q(y)}$ have the same knull dim.
(ii) $\forall y \notin Y = 0$ Y, y and $0_{X, q(y)}$ have the same knull dim.
(iii) ψ is open
(iv) X reduced [normal | regular \Rightarrow Y is reduced [normal | regular
(iv) X reduced [normal | regular \Rightarrow Y is reduced [normal | regular
(iv) X reduced [normal | regular \Rightarrow Y is reduced [normal | regular
(iv) X reduced [normal | regular \Rightarrow Y is reduced [normal | regular
(iv) X reduced [normal | regular \Rightarrow Y is reduced [normal | regular
(iv) X reduced [normal | regular \Rightarrow Y is reduced [normal | regular
(iv) X reduced [normal | regular \Rightarrow Y is reduced [normal | regular
(iv) X reduced [normal | regular \Rightarrow Y is reduced [normal | regular
(iv) X reduced [normal | regular \Rightarrow Y is reduced [normal | regular
(iv) X reduced [normal | regular \Rightarrow Y is reduced [normal | regular
(iv) X reduced [normal | regular \Rightarrow Y is reduced [normal | regular
(iv) X reduced [normal | regular \Rightarrow Y is reduced (normal | regular
(iv) X reduced [normal | regular \Rightarrow Y is reduced (normal | regular
(iv) X reduced [normal | regular \Rightarrow Y is reduced (normal | regular
(iv) X reduced [normal | regular \Rightarrow Y is reduced (normal | regular
(iv) X reduced [normal | regular \Rightarrow Y is reduced (normal | regular
(iv) X reduced [normal | regular \Rightarrow Y is reduced (normal | regular
(iv) Y is inder (iv) Y is inder (iv) Y is X Y is Y is Y is (Y is inder d' (iv)) is reduced
(ive) Y is Y x x Y is Y is Y is (Y is (iv)) is reduced
(ive) Y is (ive) = Y x x Y is (Y is (iv)) is reduced
(ive) Y is (ive) = Y x y is (Y is (iv)) is (iv) y is (iv) is

 $\frac{\text{Rmh}: \text{Locally any exale morphism of schemes is always "standard etale", i.e. of the form$ $A. \longrightarrow \underbrace{A[X]}_{(g(X))} [b^{-'}] \qquad g(X) \in A[X] \text{ monic} \\
 b \in \underbrace{A[X]}_{(g(X))} \text{ s.t. } g'(X) \in \left(\underbrace{A[X]}_{(g(X))} [b^{-'}]\right)^{\times}$

This can be used to give one line proofs of many of the above statements

$$\begin{split} & S \ 2. The the function and a group \\ & \mbox{liced}: if X is a lateral connected topological space and x \in X, one can contract the fundamental group $\pi_{\pm}(X,x)$ as the group of hourstopy (hourstopy chanes of loops in X based at x.) \\ & \mbox{liced isomorphism Aut}_{X}(\widehat{X}) \xrightarrow{\cong} \pi_{1}(X,x)$$
 where $(\widehat{X},\widehat{x}) \rightarrow (X,r)$ is the so-called universal cover of (X,x) and a way of rephrasmy this is as follows the function $Gov(X)$ \longrightarrow $hut_{X}(\widehat{X}) - fields in the function $Gov(X)$ \longrightarrow $hut_{X}(\widehat{X}) - fields in the function $Gov(X)$ \longrightarrow $hut_{X}(\widehat{X}) - fields in the function $Gov(X)$ \longrightarrow $hut_{X}(\widehat{X}) + fields is an equivalence of (X,x) and a way of rephrasmy this is as follows the function $Gov(X)$ \longrightarrow $hut_{X}(\widehat{X}) - fields in the function $Gov(X)$ \longrightarrow $hut_{X}(\widehat{X}) + fields is a group of a strange of the function $fields$ Y \longrightarrow $Gov(X)$ \longrightarrow $hut_{X}(\widehat{X}) + fields is fix $x + hut_{X}(\widehat{X}) = fix$ $x$$$$$$$$

Unlike in the topological case, this function is only procequivanticles i.e.

$$\exists \text{ projective registern } (X; \exists X); it I diacted set is with thet
$$\forall Y \exists X = F(Y \exists X) = \lim_{\substack{i \in T \\ X \in T}} \operatorname{Hom}(X; Y)$$
where $X; \exists X$ (relate $\forall : \circ I$ (if $i \in deg \ q; = \# \operatorname{Aut}_X(X;)$)

$$\exists ef: \pi_i(X, \pi) := \lim_{\substack{i \in T \\ i \in T}} \operatorname{Aut}_X(X;) \text{ state fourdamental group of X (if is a product prof)}$$
Therease $: (Y \exists X) \longrightarrow F(Y \exists X)$ defines on equivalence of categories

$$Fit/X \stackrel{c}{=} finite directe \pi_i(X, \pi) \cdot 6ti$$
Examples : (i) X = Spec(K) K field $=$) $\pi_i(K, \pi) \notin Col(K^{eef}(K))$
where $K \subset K^{nc}$ fixed als else the finite kate
and K^{eef} repeatible closure of K initials markly constrained,
 $Y: Y \rightarrow X$ between small proj causes over an edge ident field k which is timely constrained,
 $Y: Y \rightarrow X$ between small proj causes over an edge ident field k which is timely constrained,
 $Y: Y \rightarrow X$ between smooth proj causes over an edge ident field k which is timely constrained,
 $Y: Y \rightarrow X$ between smooth proj causes over an edge ident field k which is timely constrained,
 $Y: Y \rightarrow X$ between smooth proj cause over Y lik. Bicharen-thereast formula gives
 $z g(Y) - 2 = (deg \ Y) (z g(X) - 2) + \frac{z}{Fix}(c_{f} - 1) g^{(-)} goess, c_{f} rem. index of p^{(-)})$
(ii) $X = F_{K}^{d}$ $k = k^{nd}$ then every finick is index covering $Y \xrightarrow{\rightarrow} X$ of degree n
is given by a mooth proj curve $Y \mid k$. Bicharen-thereast formula gives
 $z g(Y) - 2 = -2 \cdot n \implies g(Y) = 0$ and $n < d \supset \varphi$ itomerphism
 $\Rightarrow \pi_i(X, \pi)$ trivial
(iii) $X = A_{k} = k = k^{nd}$, chan $k = 0$ then every finick is in a finish
 $y \xrightarrow{\rightarrow} X$ extends to a map $\overline{Y} \xrightarrow{\rightarrow} F_{K}$ where \overline{Y} is a finish
 $y \xrightarrow{\rightarrow} X$ extends to a map $\overline{Y} \xrightarrow{\rightarrow} F_{K}$ where \overline{Y} is a finish
 $y \xrightarrow{\rightarrow} X = g(\overline{Y}) - 2 = -2 \cdot deg(\varphi) + e_{20} - 4$ ereas $d = \infty$
 $z g(\overline{Y}) - 2 \le - deg Y - 4$ ereas $d = \varphi$ is $\overline{X} \in deg(Q)$
 $\Rightarrow 2 g(\overline{Y}) = 0$, $deg(Y) = 4$ ereas $d = \varphi$ is $\overline{X} = f_{M}(M_{K}, \bar{X})$ trivial$$

(iii) given
$$f_{2,-}, f_n \in A(T_i - T_n)$$
, every common sero $\chi_{d}(kA)^n$
of the Fills such that $Joc(F_1,...,F_n)(S_0) \in G(Ln(RA))$ lifts
to a common Few of the fills in Aⁿ
(iv) if B in an étale A-adgebra and B/m_R B $\leq kA \times B^1$ for some
 k_{A} -algebra B' thun \exists a dicomparition $B : A \times B^1$ B' Andy
Litting the dicomparition $B/m_R B \leq kA \times B^1$ B' Andy
Litting the dicomparition $B/m_R B \leq kA \times B^1$ B' Andy
Litting the dicomparition $B/m_R B \leq kA \times B^1$ B' Andy
Litting the dicomparition $B/m_R B \leq kA \times B^1$
Proof: Omithed (see Hilme, prof. 4.4d)
DE: Left (A, ma) be a board ring. A morphone of beal rough $A \Rightarrow A^A$
with A^h horizoban is called henselization if a dirights the univ.
property: $A \stackrel{T}{\to} B$ B horizoban
 $M^h : \exists !$
Proof orther 8 (i) $h^h \leq line B$ where the limit is one pairs (B, 9)
where B is an stale A-adgebra and $q \in Spec(B)$ st $q \cap A = m_A$
and $A|_{MAR} \rightarrow B/q$ is 0
(ii) $A^h \leq \bigcap_{R \in X} B$ too boardar
 $m_R \leq m_R$
 $M = M = M^{-1} G$ is a morphism of local rough $A \rightarrow A^{H}$
(iv) A strict boarder of (A, mA) is a morphism of local rough $A \rightarrow A^{H}$
(iv) A strict boarder of (A, mA) is a morphism of local rough $A \rightarrow A^{H}$
(iv) A strict boarder of (A, mA) is a morphism of local rough $A \rightarrow A^{H}$
 $M = (K, M)$ is strictly boarder and that any local morphism $A \rightarrow B$ with
 $M = (K, M)$ is strictly boarder and that any local morphism $A \rightarrow B$ with
 $M = (K, M_R)$ is strictly boarder and that any local morphism $A \rightarrow B$ with
 $M = (K, M_R)$ is strictly boarder and that any local morphism $A \rightarrow B$ with
 $M = (K, M_R)$ is strictly boarder and M_R with factorization in gravely
determined by the elemetion for as through A^H , with factorization in gravely
 M besong involue $A^{H} = W(F_R)$ (With vector)
Runk busite bowelisations, strict boarder in is NOT unique up to unique item.