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1 Introduction
[

The study of singularities has long been a central theme in commutative algebra and
algebraic geometry, with profound implications for the classification of schemes and the
structure of their derived categories. A particularly rich field of research is the singularity
category Dy (X) of a scheme X, which measures the failure of X to be non-singular by
capturing the homological complexity of its singularities. For affine schemes Spec(R), this
category is defined as the Verdier quotient

Dy (R) = D" (mod-R) / Perf(R),

where DP(mod-R) is the bounded derived category of finitely generated R-modules and
Perf(R) is the full subcategory of perfect complexes. This quotient isolates the complexes
that arise solely from the singular nature of R.

A groundbreaking advance in this field was the discovery by Eisenbud, Buchweitz, and
others that for hypersurface rings-rings of the form R/(f) where R is regular and f is
a non-zero divisor-the singularity category admits a completely explicit and computable
model via matriz factorizations, which were defined in [Eis80]. A matrix factorization
of f is a pair of maps between free R-modules whose composition is multiplication by
f. Despite their elementary definition, these objects encode deep information about the
singularity of R/(f). The seminal result is an equivalence of categories:

HMF(R, f) = D (R/(f)),

where HMF (R, f) denotes the homotopy category of matrix factorizations of f. This
equivalence was established in two parts:

1. An equivalence of categories between D,,(R/ f) and MCM(R/ f), the stable category
of maximal Cohen-Macaulay modules. This was done in [Buc86, Theorem 4.4.1].

2. An equivalence of categories between MCM(R/ f) and HFM(R/f). This was done
in [Eis80, Corollary 6.3].

The historical development of this subject intertwines with the evolution of homolog-
ical algebra. The concept of matrix factorizations first emerged in the work of Eisenbud
[Eis80], who showed that over a regular local ring R, the minimal R/(z)-free resolution
of a finitely generated R-module M is periodic after dim R + 1 of period two exactly
when the periodicity of M is equivalent to being maximal Cohen-Macaulay with no free
summands |Eis80, Theorem 6.1]. This periodicity is captured by matrix factorizations.
Later, Buchweitz [Buc86] and Orlov |[Orl04] independently developed the theory of singu-
larity categories, with Orlov extending the framework to global geometric settings. The
equivalence between matrix factorizations and singularity categories for hypersurfaces was
firmly established in this period, providing a powerful tool for studying singularities.

Meanwhile, the theory of Cohen-Macaulay modules and maximal Cohen-Macaulay
(MCM) modules played a crucial role. For a hypersurface ring R/(f), the stable category
of MCM modules is equivalent to the singularity category [Buc86]. Matrix factorizations
naturally yield MCM modules via the cokernel of their second map, and this construction

!The introduction was written using an LLM, and has been proof read by the author of this thesis.
None of the statements, though, were discovered nor proven by using an LLM.



induces the equivalence. This connection has been exploited to study the representation
theory of singularities, with applications in algebraic geometry, invariant theory, and even
string theory through Landau-Ginzburg models.

In this thesis, we focus, for the first time to our knowledge, on the basic case where the
base ring R is a principal ideal domain (PID). This choice is motivated by the fact that
PIDs provide the simplest yet non-trivial setting where the theory of matrix factorizations
becomes exceptionally tractable. Existance of the Smith normal form ensures that every
matrix over a PID is diagonalizable, allowing us to reduce the problem to the relatively
simple rank one case.

Our main contribution is a comprehensive classification of the homotopy category of
matrix factorizations over a PID R for a non-zero element f € R. We show that every
matrix factorization is isomorphic to a direct sum of rank-one factorizations (R, R, «, 3)
where af = f. We then describe morphisms, homotopies, and homotopy equivalences be-
tween these factorizations in explicit number-theoretic terms, involving greatest common
divisors, least common multiples, and valuations. Key results include:

e A characterization of homotopy equivalences between rank-one factorizations via
divisibility conditions on the parameters a and f.

e A computation of the endomorphism rings in the homotopy category, showing that
Endpwr(M) = R/(a,f)
for a rank-one factorization M = (R, R, «, ).

e A classification of indecomposable objects up to homotopy equivalence, particularly
when f = p" is a prime power.

e A formula for the number of homotopy classes of rank-one factorizations in terms
of the prime factorization of f, confirming that the singularity category vanishes if
and only if f is square-free (i.e. R/(f) is regular) [Buc86|.

This classification not only elucidates the structure of Dg(R/(f)) for PIDs but also
serves as an example of how matrix factorizations can render abstract homological algebra
concrete and computable. It illustrates the profound interplay between algebra and arith-
metic, where concepts like prime factorization and valuation directly govern homological
properties.

Through this work, we aim to demonstrate the beauty and power of matrix factor-
izations as a tool for understanding singularities, and to provide a clear, elementary
exposition that makes this advanced topic accessible to students and researchers alike.
We assume the reader is familiar with the definition of the singularity category and its
prerequisites, namely: abelian and triangulated categories, as well as graduate level com-
mutative algebra.

2 Review of Commutative Algebra

The path towards singularity categories is built upon a solid foundation of commutative
algebra. This chapter serves to establish this essential groundwork. We recall the fun-
damental concepts of reqular sequences and the depth of a module, which measure the
homological complexity within an ideal. We then review the notions of Krull dimension,



reqular and Cohen-Macaulay rings, which provide the geometric and algebraic context for
measuring regularity and singularity.

A central tool constructed here is the Koszul complex, which is sensitive to regular
sequences. Its homology provides a powerful method for computing depth and under-
standing the homological properties of a ring. We also discuss projective dimension and
global dimension, culminating in the celebrated theorem that a local ring is regular if and
only if its global dimension is finite (and equal to its Krull dimension). This equivalence
is crucial, as it directly links the geometric notion of smoothness (regularity) to the homo-
logical property of having finite projective resolutions for all modules. Understanding this
link is the primary motivation for the entire thesis: to study what happens homologically
when a ring is not regular. For the rest of this section, let R be a noetherian ring with 1
and M and R-module. We closely follow [Eis95, Section 16-19] and [Kap74, Chapter 3].

Definition 1. An M-regular sequence of length n in R is an n-tuple (z1,...,z,) of
elements in R such that:

1. (z1,...,2,)M # M, and
2. x; is not a zero divisor on M/(z1,...,x;_1) for all 7.

Example 2. For R = k[X},...,X,], the sequence given by the variables (Xj,...,X,)
is clearly regular over M = R. In fact, given a ring R containing a field k, any regular
R-sequence consists of independent indeterminates over the field k.

Proposition 3. Let I, J be ideals in R. Then (M/IM)/J(M/IM) = M/(I+ J)M
Proof. 1t is straight forward to see that the map M — M/IM — (M/IM)/J(M/IM) is

surjective with kernel I + J. O
Corollary 4. A sequence (1, ..., x,) is M-regular if and only if the sequences (1, ..., z;)
and (Z;41,...,%,) are M-regular and M/(xy, ..., z;) M-regular respectively.

Proposition 5. If z1, 2, form an M-regular sequence, then x; is not a zero divisor in

M/ZL‘QM

Proof. Suppose there exists ¢ € M/xoM with z12 = 0 (mod x3) and let ¢ be a preimage
of t in M. Then

x1t € 2o M
— 1t =x9u  for someu € M
—u € x1M  since x4 is not a zero divisor modulo z;
— 21t = z129m  for some m € M
—t = 2om
—t=0 (mod z3)

]

Proposition 6. Let M be a finitely generated module over the noetherian local ring R.
Then all maximal regular M-sequences have the same length, which is given by

min{i | Ext%(k, M) = 0}



Proof. ]

Definition 7. The Krull dimension of a ring R is given by
dim(R) :=sup{n| Py € ... P, is a chain of primes in R}

The Krull dimension of an R-module M is the Krull dimension of R/Anng(M). The
codimension of a prime ideal I is the Krull dimension of R;. The codimension of an
arbitrary ideal [ is the infimum of codimensions of primes containing it.

Example 8. e The Krull dimension of a field is 0.
e The Krull dimension of a DVR is 1.
e The Krull dimension of k[z1, ..., z,]|, where k is a field, is n.

Definition 9. Let R be a local ring. R is said to be regular if its maximal ideal can be
generated by exactly dim R elements. A non-local ring R is regular if all its localizations
at prime ideals are local.

Example 10. e Any DVR is a regular local ring.

e Let k be a field. Then k[xq,...,x,] is a regular ring; we shall see later that if R is
regular, then R|x] is regular, proving the regularity of polynomial rings over fields
by induction.

e The power series ring in any number of variables over a field is a regular local ring.
Theorem 11. A regular local ring R is an integral domain.
Proof. Cf. [Eis95] Corollary 10.14. O

Proposition 12. Let R be a regular local ring with maximal ideal m and a regular system
of parameters (xq,...,r,) - that is, the x}s are a basis of m/m? as an R/m vector space.
Then (x1,...,z,) is a regular sequence.

Proof. For each i the ring R/(x1,...,z;) is a regular local ring, and therefore an integral
domain. The image of z;, is therefore not a zero divisor and non-zero, since that would
contradict the minimality of the system of generators. O

Recall that given an R-module M we can construct the exterior algebra AM as the
tensor algebra
@M =P M
>0

—ReMao MM ...

modulo the ideal generated by * ® z and r ® y + y ® x. AM is a graded algebra. We
write AM = @;>0 A" M, with A'M being the part of degree 7, which is generated as an
R-module by the product of exactly i elements of M. Given two homogeneous elements
a, b of degrees m, n respectively, we have

aNb=(=1)""bAa

and if m = 1, then a A a = 0. This construction is functorial, maps of R-modules
f M — N lift to maps Af : AM — AN sending A\qa; = N;sq f(ai). If M is free of



rank n, then A"M = R, and if f: M — M is a morphism, then A" f is multiplication by
the determinant of any matrix representing f. Furthermore we have A‘M = 0 for i > n.
We can use the wedge product to define a very useful homological tool, called the Koszul
complex: for any R-module M and element x € M, the Kozsul complex is given by

K(z) = (NM,d.)i> 1 =0—R— M — AM — ...

where d, sends an element a to xAa. If M is free of rank n and = (21, ...,2,) € R* = M,
then we shall sometimes write K (1, ..., x,) for the Koszul complex instead of K (x). This
construction is functorial: if f : M — N is an R-module homomorphism sending x to
y, then the map Af preserves the differential, and is thus a map of complexes, exactly
because it is a map of algebras. We are interested in computing the cohomology of
the Koszul complex to prove certain theorems about depth, codimension, regularity, and
Cohen-Macauly modules.

Proposition 13. For a free R-module M of rank n and (z1,...,x,) € R* = M, we have
H"(K(z1,...,2,)) 2 R/(x1,...,2,)
Proof. We have a commutative diagram

NV M —— APM ——— AT

| | |

L R™ > R > 0

with the vertical maps being isomorphisms. The middle isomorphism identifies e; with
er A -+ A e, The leftmost isomorphism identifies the basis eq,...,e, with the basis
(€15, 6. .., En)1<i<n Where @ refers to omitting the factor e;. The map A" *M — A" M
sends the basis element ey, ..., é;, ..., e, to £x;eq, ..., e,, so the image of the correspond-
ing map in the bottom row is the ideal generated by (z1,...,x,). The kernel of the map
R — 0 is clearly R, therefore

H"(K(z1,...,2,)) 2 R/(x1,...,2,)
[

Theorem 14. Let M be a finitely generated R-module and let r € Z such that for i <r
we have ‘
H' (M ® K(z1,...,2,)) =0

and otherwise '
H' (M ® K(z1,...,2,)) #0,

Then every mazximal M -reqular sequence contained in the ideal (x1,...,x,) has length r.

Corollary 15. If x = (xy,...,x,) is a regular M-sequence, then M ® K(x) is exact
except at the extreme right.



Proof. The length of a maximal regular M-sequence in the ideal (xy,...,z,) is at least
n, so theorem gives us that

H' (M ® K(x1,...,7,)) =0 fori <n,

which is the first assertion. The second assertion is a bit less straightforward. Firstly,
note that H"(M ® K(x1,...,x,)) is the homology of the complex

M&AN"'R" = M®A"R" — 0
So we have
H"(M ® K(1,...,2,)) = Coker(M @ A" *R" — M ® \"R")
= M ® Coker(A" 'R" — A"R")
=M®R/(x1,...,7,)
=M/(xy,...,x,)M.
[

The converse is in general false, but it holds in the local setting (cf. |Eis95] Example
17.3 and Corollary 17.12).

Definition 16. Let [ be an ideal of R such that IM # M. The depth depthg (I, M) of I
on M over R is the length of any maximal regular M-sequence contained in I. If M = R,
we shall have depthy(I) := depthy(I, R).

Example 17. In M = k[z,y]/(z), multiplication by y is injective: if y_-? =01in M, then
yf € (z) in k[z,y]. Since x,y is a regular sequence in k[x,y|, | f,so f = 0in M. Hence
y is M-regular. After modding out by y, we get

M/yM = k[z,y]/(z,y),

which is a field. Any element of m kills this quotient, so no further M-regular element
exists.
Thus the longest M-regular sequence in m has length 1, and

depth,, (M) = 1.

Proposition 18. Let [ be an ideal of R and P be a prime ideal and assume that M is
finitely generated.

e Regular sequences are stable under localization at prime ideals, meaning if P is a
prime ideal in the support of M, then any M-regular sequence in P localizes to an
Mp-regular sequence

o depthp(1, M) < depthyg,(Ip, Mp)

e There exists a maximal ideal m in the support of M such that depthg (I, M) =
depthp_(Im, Mu)
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Proof. For the first statement, note that quotients and non-zero divisors are stable under
localization. Furthermore, Nakayama’s lemma gaurantees that I My, # M.

For the second statement, choose a maximal regular M-sequence zy, ..., x, contained in
I. Since I consists of zero divisors on M/(xy,...x,)M, I is contained in the union of
associated primes of M/(xy,...,x,.)M, and since the set of associated primes is finite,
prime avoidance shows that I is contained in one of them. Localizing at this prime, or at
any prime containing it, will preserve the depth of I on M. O]

Lemma 19. If R is a local ring with maximal ideal m, M is a finitely generated R-module,
I is an ideal of R, and x € R. Then

depthg((I,x), M) < depthgy(I, M) + 1
Proof. Cf. [Eis95] Lemma 18.3. O

Proposition 20. Let R be a ring and let M and N be finitely generated R-modules. If
AnnM + AnnN = R the Extj(M,N) = 0 for all r. Otherwise depthz(AnnM, N) is the
smallest number r for which Ext,;(AnnM, N) does not vanish.

Proof. Cf. [Eis95] Proposition 18.4. O
Corollary 21. pdgz (M) > depthy(annM, R).
Proof. Take M = R in the previous proposition. O
Corollary 22. Let 0 - N’ — N — N” — 0 be an exact sequence of R-modules. Then:
1. depthz(N") > min(depthz(NV), depthz(N') — 1), and
2. depthy(N') > min(depthy(NV), depthp(N” + 1)).

Definition 23. The projective dimension of an R-module M, denoted by pdg(M) is
the infimum of lengths of projective resolutions of M. The injective dimension idg(M)
is defined analogously. The global dimension of a ring R, denoted by gldim(R) is the
supremum of the global dimensions of finitely generated modules over it.

Example 24. The projective dimension of I, over Z, is 1; we have a short exact sequence
0—=2Z,>7Z,—>F,—0

which is a projective resolution of F, of length 1. Since [F, itself is not projective, we
have pd; (F,) = 1. The global dimension of Z, is also 1. This follows from the structure
theorem of finitely generated modules over a PID; The free part is projective, and the
torsion terms have exact sequences similar to the one above and can thus be shown to
have projective dimension 1. Since projectivity is stable under direct sums, so is the
projective dimension, hence the projective dimension of any module over Z, is 1 and so
is the global dimension. Indeed this proof works for any DVR.

Theorem 25. For a ring R The following are equivalent:
1. gldimR <n,

2. pdr(R/I) < n for every ideal I,



3.
/

11

idr(M) < n for all R-modules M, and

Exty(M,N) =0 for all R-modules M, N.

Proof.

1 — 2

2 —= 3

3 — 4

4 — 1

is trivial.
: Suppose 2 holds and let
O—+M-—-FE— - —LE,_1—-X—=0

be an exact sequence with F; injective. If we show that X must be injective, then
we have found an injective resolution of M of length n, and we are done. Break the
sequence into short exact sequences and consider the long exact sequences given by
the derived functor Exty(R/I,—) to obtain

Extp(R/1,X) = Exti™ (R/1, M)

The latter being zero by evaluating through any projective resolution of length < n.
Computing Exzth(R/I, X) from a projective resolution of R/I, we see that this
hypothesis is equivalent to saying that if 1) : I — X is any map, then there is a map
R — X such that the composition I — R — X is ¢. Baer’s criterion then gives the
injectivity of X.

: Computing Extg(M, N) from an injective resolution of M gives the result.

: Suppose 4 holds, and let
O0—=X—=F, —=--—=F—-M=0

be an exact sequence with F; projective for all 7. As in the proof of 2 = 3,
it suffices to show that X is projective. Splitting the sequence into short exact
sequences and applying Exty(—, N) gives

Exty(X,N) = Exth™ (M, N) = 0.
To show that X is projective, consider a projective resolution of X

P —)P1—>P0—>X—>O

Let N be the kernel of the map Py — X. The map P, - Fy, — X is a cycle of
Hom(P, N) and thus defines an element of Fxth(X, N); since this group vanishes,
the element is a boundary so there is a map Py — N extending the map P, — X.
This map is a splitting of the inclusion N — Fy, and thus Coker(Fy — X) splits as
well.

]

In the local case, the notions of free and projective modules coincide, leading us to
think about "locally free” modules.
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Definition 26. An R-module M is said to be locally free if M,, is free for every maximal
ideal (and therefore every prime ideal) m of R.

Theorem 27. Let M be a finitely generated module over a noetherian ring R. Then M
18 projective if and only if it is locally free.

Proof. Cf. |Eis95, Theorem 19.7] O

The following corollary is important to show that every finitely generated module over
a regular local ring has a finite free resolution of length (at most) n.

Corollary 28. If v = (x1,...,x,) is a regular sequence, the K(x) is a free resolution
of R/(x1,...,x,). In particular, if R is a regular local ring, and z gives a minimal set
of generators for the maximal ideal of R, then the Koszul complex K(x) is a finite free
resolution of the residue class field of R.

Proof. The first statement is essentially Corollary . The second statement relies on
the fact that a minimal set of generators for the maximal ideal forms a regular sequence,
which is Proposition ([12]). O

The following theorem (the Jacobi criterion, which is essentially the inverse function
theorem) shows the connection between regularity and smoothness

Theorem 29. Let S = k[zy,...,x,] where k is a field, I = (f1,..., fn) be an ideal, and
R =S/I. Let P be a prime ideal of S containing I and let k(P) be the residue class field
at P. Let ¢ be the codimension of Ip in Sp.

1. The Jacobian matrix
J = (5]2/51'])17]

has rank ¢ when taken modulo P.

2. If k has characteristic p > 0 and k(P) is seperable over k, then Rp is a reqular local
ring if and only if J modulo P has rank c.

Proof. Cf. |Eis95] Theorem 16.19. O

Definition 30. A complex X : --- — X; — X, ;1 — ... over a local ring R with maximal
ideal m is said to be minimal if the maps in X ® R/m are all zero.

Example 31. The complex 0 — Z, 2 Z, — 0 is minimal over Z,.

Lemma 32. A free resolution (F;,d;); over a regular local ring is a minimal complex if
and only if a basis of F; maps onto a minimal set of generators of coker d; 1.

Proof. Let R be a regular local ring with maximal ideal m, and let dy be the natural map
Fy — Coker(d;). For any > 0, consider the induced surjective R/m-linear map

F,_1/mF,_; — Coker(d,)/mCoker(d,,).

Nakayama’s lemma tells us that a basis for the vector space on the righ is a minimal set
of generators of Coker(d,). Thus the second condition of the lemma is satisfied if and
only if this surjective linear map is an isomorphism. This is equivalent to the condition
that the image of d,, is in mF},_;, which is the condition of minimality. O
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Corollary 33. If R is a local rings with residue class field k, and M is a finitely generated
nonzero R-module, then the projective dimension of M is the length of every minimal
free resolution of M. Furthermore, pdz(M) is the smallest integer ¢ > 0 such that
Torf , (k, M) = 0. Thus the global dimension of R is equal to the projective dimension of
the residue class field k.

Proof. Cf. [Eis95] Corollary 19.5. O

Theorem 34. Let R be a local ring. Then R is a reqular if and only if gldimR = dim R <
00.

Proof. Let z1,...,z, be generators of the maximal ideal of R. Then K(z,...,z,) is a
minimal free resolution of length n of the residue class field of R, therefore n = pdy(k) =
gldimR. [l

Proposition 35. Every finitely generated k[z1, . .., x,]-module has a finite free resolution.
Proof. Cf. |Eis95] Corollary 19.8. O
Theorem 36. A local ring has finite global dimension if and only if it is reqular.

Proof. Suppose R is a regular local ring and let (z1, ..., z,) be a minimal set of generators
for the maximal ideal. Then the Koszul complex K(z1,...,x,) gives a free resolution of
the residue class field of R. For the other direction see [Eis95, Theorem 19.12]. O

Proposition 37. Every localization of a regular local ring is regular and every localization
of a polynomial ring over a field is regular.

Proof. Cf. [Eis95, Corollary 19.14]. O
Proposition 38. A noetherian ring R is regular if and only if R[z] is regular.

Theorem 39. Let R be a local ring with mazimal ideal m, and let M be a finitely generated
R-module of finite projective dimension. Then

pdpM = depthr(m, R) — depthy(m, M)

Definition 40. A ring R is said to be Cohen-Macauly if depthy(m) = codim(m)
for every maximal ideal m of R. A module M over R is said to be Cohen-Macauly if
depthp (M) = dimgr(M). M is maximal Cohen-Macauly (MCM) if depthy(M) =
dim(R).

If a scheme is locally Cohen-Macauly at a point P, then P cannot lie in the intersection
of components with different dimensions. This hints as to why Cohen-Macauly rings are
important for the study of singularities; We will see later that for certain nice rings, the
singularity category coincides with the stablization of the category of MCM modules over
R.

Proposition 41. For any finitely generated R-module M we have depthz (M) < dimg(M) <
dim(R)

Proof. The second inequality is clear. To show that the first one holds, let (z1,...,z,)
be a regular M-sequence. We claim that

dim M/(zy,...,2,)M =dim M —n
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Proposition 42. Let R be a local ring. If there exists a finitely generated module of
projective dimension equal to the dimension of R, then R is Cohen-Macauly. If, on the
other hand, R is Cohen-Macauly, then the projective dimension of a finite projective
dimensional module M coincides with the dimension of R if and only if the maximal ideal
is associated to M, i.e., it is the annihalator of an element of M

Definition 43. The stable category of maximal Cohen-Macauly R-modules MCM(R) is
the additive category whose objects are MCM R-modules, and whose hom-groups are
given by Hompg(M, M')/P, where P is the subgroup of morphisms from M to M’ which
factor through a finitely generated projective R-module.

Definition 44. A ring is called Gorenstein if it has finite injective dimension as a
module over itself.

Proposition 45. A local noetherian ring R with residue field £ is Gorenstein if and only
if there exists n such that Ext,(k, R) vanishes for all i > n.

Proof. If R is Gorenstein, then calculating Ext from any finite injective resolution gives
the result. The other direction follows from [Theorem 25 O

Proposition 46. Suppose R is Gorenstein and M is a finitely generated R-module. Then
Ext, (M, R) vanishes for all » > 0 if and only if M is maximal Cohen-Macauly.

Proof. |Sym22| Lemma 5.2.13 O

3 Matrix Factorizations

Let R be a commutative ring with 1 and o € R.

Definition 47. The category of matrix factorizations of o over R, denoted by M F(R, o),
is the category whose objects are quadruples (F, G, ¢, 1) consisting of finitely generated
free R-modules F, G and R-linear maps ¢ : F' — G and ¥ : G — F' such that ¢ = 0 -1dg
and ©¥¢ = o -idp. A morphism of matrix factorizations f = (f1, f2) : (F,G,0,v¢) —
(F', G, ¢',¢") is a pair of R-linear maps f; : F' — F’ and fy : G — G’ such that the
following diagram commutes

F—2,a- Y, F
fll lf2 lf1
e L

The set of morphisms from M to M’ is denoted by Hompp (M, M").
Proposition 48. The category M F(R, o) is R-linear. More precisely:

1. The operation (f1, fo)+ (g1, 92) = (f1+ 91, fo+go) makes Homps (M, M') an abelian
group.

2. The operation a(f1, f2) = (afi1, afs) makes Homy p(M, M’) an R-module.

3. Composition of morphisms is bilinear, that is for all matrix factorizations M, M’, M"
and all g,h € Hompyp(M,M') and f € Hompp(M', M") we have fo (g+ h) =
fog+ foh.
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4. The zero object is given by 0 = (0,0, 0,0).

5. Finite direct sums of matrix factorizations exist, and are given by the natural rule

(F,.G, 0, 0) @ (F',G", ¢/, ¢)) = (FeF,Go G, 00 ¢, ®Y)

Proof. 1. We can view Homyp(M, M') as a subset of Homg(F, F') x Homg(G,G’)
by identifying a morphism (f1, f2) of matrix factorizations to the pair (f1, f2). In
this way, we can check that Homy;p(M, M’) is in fact a subgroup under addition.
To do this, let (f1, f2), (91, 92) € Hompp(M, M'). Then we need to check that the

diagram
F'sa-Y,F
fl—gll lfz—gz lfl—gl
J QN o Ny 7

commutes. Which is clear since

(f2 = 92)0 = fa0 — G20
=¢'fi —¢'g1 since f,g € Hompp(M, M)

= ¢/(f1 - 91)

an analagous calculation shows that the second square also commutes, thus we are
done.

2. given a commutative diagram

F ¢>G IZ)>F

AT

F’ ¢/>G’ z/j/>F’

the diagram

af 1l laf 2 laf 1

F ¢,>G’ ¢/>F’

clearly commutes.
3. This follows from bilinearity of composition of R-module homomorphisms.

4. First, note that the zero quadruple is in fact a matrix factorization of o since 0 =
idy = oidy = 0-0. It is clear that Hompr(0, M) = 0 and Hompp(M,0) = 0, thus
making 0 the zero object.

5. It follows from the existence of direct sums of R-modules that the direct sum of
matrix factorizations exists as a quadruple. to check that it is a matrix factorization
of o, note that

(@ ¢ )o(W®Y) = (pot)) ® (¢ 0¢) = oidg ® oider = didgec

and

(WoY)o(p® ) =Woo)® (W o) =cidp ® oidp = oidper
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Definition 49. Two morphisms f = (f1, f2),9 = (¢1,92) from M = (F,G,¢,¢) to
M = (F',G", ¢, ¢') are said to be homotopic, denoted by f ~ ¢ if a homotopy from
f to g exists; that is a pair of morphisms ¢ : FF — G’ and s : G — F’ such that
fi— g1 =50+ ¢t and fo — go = tp + ¢'s, depicted by the diagram:

F ¢>G w>F

fl—gll / lfz% lfl—m

F’ id s G i s |

A morphism is said to be nullhomotopic if it is homotopic to the zero morphism. Two
matrix factorizations M, M’ are said to be homotopy equivalent, denoted by M ~ M’ if
there are morphisms f : M — M’ and f’ : M’ — M such that the compositions f o f’
and f’ o f are homotopic to the identity morphisms.

Note that two morphisms f, f/ are homotopic if and only if f — f’ is nullhomotopic.

Proposition 50. Let M = (F,G,¢,v) and M’ = (F',G',¢',¢'). The set of nullhomo-
topic morphisms forms an R-submodule of Hom s p (M, M").

Proof. Let f,g € Homp p(M, M') be nullhomotopic via the homotopies (s, t), (s',t') from
f and g to zero respectively and let a,b € R. Then (as — bs’, at — bt’) is a homotopy from
af —bg to 0 since
afy —bgr = a(s¢ +4't) —b(s'¢p +¢'t')
= (as — bs')¢ + ' (at — bt")
and
fo— g2 =a(ty+ ¢'s) —b(t'y + ¢'s')
= (at — bt") + ¢'(as — bs')
O
Definition 51. The homotopy category of matrix factorizations H M F (R, o) is the cate-

gory whose objects are matrix factorizations of o over R and where the set of morphisms
between two factorizations M, M’ is given by Hompyp(M, M') = Hompyp(M, M')/ ~.

We can equip M F(R, o) with an endofunctor 3 that sends an object (F, G, ¢,1) to a
7shift” (G, F, =1, —¢), and a morphism given by

¢ ¥

F >y G y F

fll lf2 lfl

J N G’ LAy
to the morphism given by

Gy Fr_—%,q

le lfl lfz

ANy i ANe

Proposition 52. ¥, also called the suspension, is an additive autoequivalence of M F(R, o).
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Proof. ¥ is an autoequivalence as it clearly satisfies 2 = id;r. Furthermore, an equiva-
lence of additive categories is automatically additive. O]

Remark 53. X clearly preserves nullhomotopic factorizations, thus it induces an additive
autoequivalence on HMF(R, o).

Proposition 54. Let R be an integral domain and let (F, G, ¢, 1) be a matrix factoriza-
tion of a non-zero o € R. Then the ranks of F' and G coincide. Therefore we can assume
that the modules in a matrix factorization are free of the same finite rank, thus, we can
define the rank of a matrix factorization over a domain to be the rank of those modules.

Proof. 1t clearly suffices to show that ¢ preserves linear independence. For by symmetry,
the same holds for ¥, and thus the maps map bases onto linearly independent sets, thus
showing that the ranks coincide. To that end, let a,b € F be linearly independent and
a, € R such that

ag(a) + Be(b) = 0.
Applying 1 to both sides gives

(a0)b+ (Bo)b = 0.

Since a and b are independent, the coefficients are zero. Since R is a domain and o is
non-zero, then a = § = 0. O

Definition 55. Let R be an integral domain and ¢ € R a nonzero element. The rank
of a matrix factorization M = (F,G, ¢,¢) € MF(R, o) is the rank of F' (or equivalently,
the rank of G) as a free R module.

From now on, we will assume that all matrix factorizations over an integral domain are
of the form (R™, R™, ¢, ) since for any (F, G, ¢,v) € MF(R,0) we have an isomorphism
given by

¢ G ¢>F

L L

RM gqﬁf”> RM fiog™! RM

7

where f: FF— R™ and g : G — R™ are isomorphisms.

4 The Singularity Category

In this section, we recall the definitions of the singularity category and the equivalence
with the stable category of MCM modules. Recall that an abelian category is a cate-
gory whose hom-sets are abelian groups with Z-bilinear composition of morphisms, has
a zero object, admits finite products, kernels, and cokernels, and monomorphisms and
epimorphisms are normal; that is, they are kernels and cokernels (respectively) of some
morphisms. The bounded homotopy category K°(2) of an abelian category A is the cat-
egory whose objects are bounded complexes in 2 and whose morphisms are morphisms
of complexes up to homotopy equivalence. The bounded homotopy category is a trian-
gulated category in which the acyclic complexes form a null system. The quotient of the
bounded homotopy category by acyclic complexes gives the bounded derived category
DP(21) of the abelian category 2(. The bounded derived category of a ring R D°(R) is the
defined to be the bounded derived category of the category of R-modules.
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4.1 Abelian Categories

Abelian categories are essentially categories in which morphisms admit kernels and cok-
ernels. This allows us to do homological algebra in a very natural way. In this part, we
sketch the theory of abelian categories following [Kash06]. Let A be a category and R
be a commutative ring with 1.

Definition 56. A is called an R-linear category if its Hom-sets are R-modules and com-
position is R-bilinear. If R = 7Z, then we call A a preadditive category

Example 57. The cateory Ab of abelian groups is a preadditive category. The category
of R-modules is R-linear.

Definition 58. An object A € A is called an initial object if there exists a unique
morphism A — X for any object X € A. A is called a terminal object if there exists a
unique morphism X — A for any object X € A. A is called a zero object if it is both
initial and terminal.

Example 59. The zero group is a zero object in Ab. The singletons are terminal objects
in Set.

It is clear that initial, terminal, and zero objects are unique up to unique isomorphism.

Definition 60. Let A, B be objects of A. A product of A and B is an object A x B and
a pair of morphisms A x B — A and A x B — B such that for any pair of morphisms
T — A and T — B, there exists a unique morphism 7" — A x B such that the diagram

X ——B

A—— Ax B

commutes. The dual concept of a product is a coproduct.

The product (and the coproduct), if it exists, is unique up to unique isomorphism. So
we can talk about the product and coproduct of objects.

Example 61. In the category of sets, the cartesian product is the product of two sets,
while the disjoint union gives the coproduct.

Definition 62. A is called additive if it is preadditive, has a zero object, and is closed
under products. A functor F': A — B is between additive categories is called an additive
functor if F(f + g) = Ff+ Fg for all morphisms f, g in A, that is; the functor induces
homomorphisms of groups between the Hom-sets.

Proposition 63. Finite products and coproducts coincide in additive categories.
Proof. See [tb11]. O

Definition 64. Let f : A — B be a morphism in an additive category A. The kernel of
f is a morphism i : ker(f) — A such that fi = 0, and for any morphism ¢ : 7" — A with
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the property that fg = 0, there exists a unique morphism u : 7" — ker(f) such that the
diagram

commutes. The dual concept is called a cokernel.

The (co)kernel, as with almost every object defined by universal properties, is unique
up to unique isomorphism if it exists.

Proposition 65. e The (co)kernel of f is the zero object if and only if f is a monomor-
phism (epimorphism).

e The map ker(f) — A (B — Coker(f)) above is an isomorphism if and only if f = 0.

Definition 66. A category is said to be abelian if it’s additive, admits all kernels and
cokernels, all monomorphisms are kernels and all epimorphisms are cokernels of some
morphisms.

Definition 67. A cochain complez (or simply: a complex) over an additive category A is
a family (X*, d%) indexed by Z where X* are objects of A, called the terms of the complex,
and d : X* — X are morphisms in A, called the differentials of the complex, such
that di'dy = 0 (or d% = 0 for short). We represent a complex X diagramatically as:

i—1 i it+1

Xy xSy xS
Example 68. Exact sequences of modules over a ring are examples of complexes.

Definition 69. A complex X* is said to be bounded below if there exists n € Z such that
Xt =0 for all i <n. It is bounded above if X* = 0 for i > n for some n € Z. It is simply
bounded if it is bounded below and above.

Definition 70. A morphism of complexes f : X* — Y* is a family of morphisms (f :
X% — Y?);cz such that the diagrams

Xi dx y Xi+1

lf@ lfi-ﬁ—l
di

Yi Y y Yi+1

commute.

We denote by C(A) the category of complexes over A. We denote by C®(A) the full
subcategory of bounded complexes. It is not hard to see that C'(A) is again an additive
category. In fact, if A is abelian, then so is C'(A).
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Definition 71. A homotopy between two morphisms of complexes f,g: X®* — Y*®is a
family of morphisms (si Xt Yi_l)iez such that

fi _ gi _ s”ldf'x X d§;15i_
In this case, f and g are said to be homotopic. If g = 0, f is said to be nullhomotopic. A

morphism f : X* — Y* is said to be a homotopy equivalence if there exists a morphism
g:Y*® — X°®such that fg and gf are homotopic to the identities on their domains.

It’s not difficult to see that the null homotopic morphisms form a subgroup of the
Hom-sets of C(A), which motivates the following definition:

Definition 72. The homotopy category K(A) of an additive category A is the category
whose objects are complexes over A and whose Hom-sets are the Hom-sets of C'(.A) modulo
nullhomotopic morphisms.

Definition 73. The i-th cohomology group of a complex X = (X* d%) is given by
 kerdy

1
imd'y

H(X):

A complex is said to be exact at the i-th term if the i-th cohomology group vanishes. If
all cohomology groups of a complex vanish, the complex is called acyclic.

Some diagram chasing enables us to see that morphisms of complexes induce maps on
cohomology groups.

Proposition 74. Homotopic morphisms induce the same map on cohomology groups, in
particular, homotopy equivalences induce isomorphisms on cohomology groups.

Definition 75. A morphism of complexes f : X — Y is called a quasi-isomorphism if it
induces isomorphisms on cohomology groups.

4.2 Triangulated Categories

An issue that arises when dealing with complexes is that K(A), although additive, is
not necessarily an abelian category even when A is. However, it has the slightly more
complicated structure of a triangulated category, which we describe here.

Definition 76. Let A be an additive category with an additive autoequivalence [1] : A —
A, sending an object A to A[l]. We call such a pair (A, [1]) an additive category with
translation. An additive functor of additive categories with translation ' : A — A’ is one
that commutes with the translations; that is it satisfies F o [1] ~ [1] o F..

Definition 77. Let F, F' : A — A’ be functors of additive categories with translation.
A morphism of functors of additive categories with translation is a morphism of functors
0 : I — F’' such that the diagram

o[

F1] F'[1]
njF %

where the downwards arrows are the isomorphisms from the previous definition.
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Definition 78. A triangle in an additive category with translation is a sequence
X—=>Y—>Z7Z-—X[1].

A morphism of triangles is a commutative diagram
X

R

f \ \
X’ s Y’ A

,
g
=

Definition 79. An additive category with translation (A, [1]) is called a triangulated cat-
egory if it contains a family of triangles, called exact (or distinguished) triangles satisfying
the following axioms:

TRO A triangle isomorphic to an exact triangle is exact.
TR1 For any X in A, the triangle X XX 50— X[1] is an exact triangle.

TR2 For any morphism X — Y in A there exists an exact triangle X — Y — Z — X][1].

TR3 The triangle X Ly sz X[1] is exact if and only if Y — Z — X[1] A, Y]
1s exact.

TR4 A commutative diagram

X > Y » 7 > X 1]
lf l |
X — Y , 7' X'[1]

where the rows are exact triangles can be extended to a morphism of triangles

X > Y 4 > X[1]
L A
X' > Y’ > 7! > X'[1]

TRH5 Given exact triangles

X Oy g Ly

2\

V
S
=
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There exists an exact triangle

7' Y — X 7'

such that we have a commutative diagram

Xty 2z X[
id h u id
y 257t X > Y1)
! id v 711
X -2z Ly » X[1]
h l id h[1]

Definition 80. 1. A triangulated functor between triangulated categories is an addi-
tive functor that preserves exact triangles. An equivalence of triangulated categories
is a triangulated functor which is also an equivalence of categories.

2. A morphism of triangulated functors is a morphism of additive categories with
translation.

3. A triangulated subcategory of a triangulated category is one for which the inclusion
functor is triangulated.

Definition 81. Let 7 be a triangulated category and let A be an abelian category. A
functor from F' : T — A is called a cohomological functor or an exact functor if for any
exact triangle X — Y — Z — X[1], the sequence F(X) — F(Y) — F(Z) is exact in A.

Note that together with axiom (TR3), a cohomological functor H turns exact triangles
X =Y — Z — X[1] to long exact sequences

o= H(X[i]) = HYi]) = H(Z[i]) - H(X[i +1]) — ...
where [i] := [1]%.

Definition 82. Let 7 be a triangulated category. A null system in 7T is a collection N
of objects of T satisfying:

N1 0eN
N2 N is closed under translation and its inverse.
N3 if X =Y — Z — X][1] is an exact triangle with X,Y € A/, then Z € N.

There is a special collection of morphisms associated to a null system defined as follows:
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Definition 83. In the above situation. We define the multiplicative system associated to

N as
SN) ={(f: X = Y)|3 exact triangleXi>Y—>Z—>X[1] with Z € N'}

The reason this is called a multiplicative system is that it satisfies certain axioms that
make them easy to invert in some bigger category. Those axioms are discussed in detail
in [stacks-project| and will not be repeated here as we will not be using them in the
main part of this thesis.

4.3 The Derived Category and The Singularity Category

The derived category of an abelian category is essentially the homotopy category with
quasi-isomorphisms inverted; i.e. they become isomorphisms in the derived category. To
make this concept rigorous, localization of categories was introduced. We recall those
concepts in this part.

Definition 84. Let C be a category and S be a collection of morphisms of C. A localization
of C by S is a category C[S™!] and a functor @ : C — C[S™!] such that

e For all s € 5, Q(s) is an isomorphism.

e Any functor F' : C — T such that F(s) is an isomorphism for all s € S factors
through @

e The functor (— o Q) : Func(C[S™], T) — Func(C, T) is fully faithful.

It is known that localizations always exist, but there are some set theoretic issues that
might arise with them; the general localization procedure yields proper classes that might
not be sets. However, those issues vanish in the case where the category is triangulated,
and S is the multiplicative set associated to a null system, in which case we view the
localization as a quotient of categories by the null system or the subcategory. for more
details, refer to [Sta25| Tag 05R1].

Theorem 85. Let A be an abelian category. Then K(A) with X[1]" := X! is a trian-
gulated category where the acyclic complexes form a null system.

Proof. Cf. [stacks-project| for the first statement. For the second statement it is clear
that 0 is acyclic and that shifts of acyclic complexes are acyclic. (N3) follows from the fact
that the functor H°(—) is cohomological, which gives a long exact cohomology sequence,
allowing us to easily compute the cohomology groups of Z to be 0. O

Definition 86. Let x € {b, }. The derived category of an abelian category .4, D*(.A),
is the quotient of K*(A) by the collection of acyclic complexes. In the case where A =
(R — mod) (finitely generated R-modules), we shall simply write D*(R).

The most important example for us is the singularity category. Which, following
[Or106], Definition 1.7], can be defined as follows:

Definition 87. Let 7 be a triangulated category. An object T is said to be homologically
finite if for any object S € T, all Hom(T', S[i]) are trivial except for a finite number of
i € Z. Those objects form a triangulated subcategory, which we denote by 7.


https://stacks.math.columbia.edu/tag/05R1
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Definition 88. We define 7y,, the singularity category of T to be the quotient of T by
Thy-

Definition 89. A complex of R-modules is said to be perfect if it is quasi-isomorphic to
a bounded complex of finitely generated projective modules.

In [Orl06, Proposition 1.11], it was shown that the perfect complexes are exactly the
homologically finite objects of D?(R) (Although Orlov did this for the more general case
of a certain class of schemes). Which finally allows us to define the singularity category
of a ring.

Definition 90. The singularity category of a ring R is the quotient of the derived category
of the category of finitely generated R-modules D?(R) by perfect complexes.

It was shown in [Sym22] that the singularity category of a Gorenstein ring is equiv-
alent to the stable category of MCM modules over it. Furthermore, note that given a
matrix factorization (F, G, ¢, 1) we have an exact sequence

0—>F£>G—>Coker(¢)—>0.

Since F' and G are free modules, this is a projective resolution of Coker(¢) of length 1,
so that the projective dimension Coker(¢) is 1, making is maximal Cohen-Macaulay by
an easy calculation using the Auslander-Buchsbaum formula. This gives a functor from
the category of matrix factorizations to the category of MCM modules over R, which can
be shown to send nullhomotopic factorizations to projective modules, inducing a functor
from the homotopy category of matrix factorizations to the stablized category of MCM
modules, which can be shown to be an equivalence of categories.

Theorem 91. The functor
HMF(R,0) - MCM(R/o); (F,G,¢,¢) — Coker(¢)

18 an equivalence of categories. Thus, the homotopy category of matrixz factorizations of
o over R is equivalent to the singularity category of R/o

Proof. Omitted. See [Sym22, Theorem 5.3.20] for a sketch of the proof or [Lan16, Theo-
rem §5.2]. O

5 Matrix Factorizations over PIDs

We now study matrix factorizations in the interesting case where R is a principal ideal
domain and o € R/{0}.

Proposition 92. Let R be a PID and M = (R™, R™, ¢,1) # 0 be a matrix factorization
of o € R and represent ¢ and v with matrices in Mat,,(R). Then M is isomorphic to a
matrix factorization M’ = (R™, R™, ¢',¢’) where ¢' and ¢’ are diagonal matrices.

Proof. Since R is a PID, we can find invertible matrices S and T such that D, := S¢T
is a diagonal matrix (the Smith normal form of ¢). Furthermore, we have the adjoint
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matrix of Dy, denoted by adj(Dy), which satisfies adj(Dy) Dy = det(Dy) E,,, where E,, is
the m x m identity matrix. Putting all of this together we get

oY =0k,
SS¢TT ") = 0E,,
STIDT " = 0E,
adj(Dy) DT~ = oadj(Dy)S
det(Dg)T~ 'S~ = oadj(Dy)
The adjoint matrix of a diagonal matrix is diagonal, which means that det(Dy)T 1S~ is
a diagonal matrix. Since R is a domain and det(Dy) # 0, Dy, := T~ 'S~ is diagonal. The

pair (7!, S) gives an isomorphism of matrix factorizations from M to (R™, R™, Dy, D)
with inverse (T, S71). O

Corollary 93. Every matrix factorization of ¢ € R is isomorphic to a direct sum of
factorizations of rank 1.

Proof. Given a matrix factorization M = (R™, R™, ¢,1)) whose maps are diagonal matri-

ces, we have
m

M = @(RJ R7 ¢i7 1/}1)
i=1
where ¢; and 1); are the i"* diagonal entries in ¢ and v. The proposition tells us that
every matrix factorization is isomorphic to such an M. O]

We now study matrix factorizations of rank 1 over a PID more closely. For the rest
of this discussion, let M; = (R, R,«a1,1) and My = (R, R, a9, 32) be rank 1 matrix
factorizations of o. We can identify morphisms in Hom;r(M;, Ms) with elements of R
in the following way: a morphism (f1, f2) depicted by the diagram

R-—>yRrR 2R
lfl lfz lfl
R->2,r-2,R

must satisfy asfi = foay. Viewing this as an equality in R we can see that there exists
J € R such that f; = < f and fo = %2 f where d is the greatest common factor of a; and

ay. So we obtain a map R — Homr(My, Ms) sending f to the morphism (% f, %2 f).

Proposition 94. The map R — Hom (M, M) described above is an isomorphism.

Proof. We first show that the map is a well defined group homomorphism. For f € R,
the map (% f, % f) gives rise to a diagram

R al 6

s R
w1 |2
R—23 R

v R
f l%lf
IS

The left square is clearly commutative. The right square is commutative since ;5 =
0 = agfls, hence the map is well defined. To see that it is a group homomorphism take
frg € R Then (%f,%f)+ (Fg,%g9) = (5(f +9),2(f +g)). The map is injective
since (% f, %2 f) = 0 if and only if f =0, a; = 0 or ag = 0, but M, M; are of rank 1, so
the o’s cannot be 0. Hence f = 0. It is surjective by the discussion above. O]
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From now on, we will identify morphisms in Hom (M, M) with elements f € R,
and we set d := (a1,az), | = lem(ay,ay) where (—, —) stands for the greatest com-
mon divisor -we choose d and [ as elements in R in such a way that dl = ajas-. We
can compose the isomorphism R — Homy (M, Ms) with the canonical projection to
Homynp(My, Ms). The kernel of this composition consists of elements of R which give
rise to nullhomotopic morphisms from M; to M. We can describe the kernel as follows.

Proposition 95. In the situation above f gives rise to a nullhomotopic morphism if and
only if (%,d)|f. So Hom(My, My) = R/(%,d)

Proof. (% f, % f) is homotopic to zero if and only if there are elements s,¢ € R such that
L f =sp+tay and G f = sf +tay. By substituting o% = (3 and C% = (5 in the first

and second equations respectively, we get

(6) g
—f=s5s— 4t
d aq

Qa0

d

f=s0+tasay

and o o
—f =s—+tay
d [6%)
109
d
so the equations are equivalent. By rearranging either one we obtain

f=s0+tajas

f=—Ts+dt="Ts+dt

(0518

which has a solution (s,t) if and only if (7,d) divides f. On the other hand, let f € R
such that (7,d)|f. Bezout’s identity gives us s, € R such that

do

f=Ts4dt =

+dt
l 109

replacing o by ay3; and as (s, simplifying, and rearranging we get

%f:$51+t042

and %f = Sﬁg + t&l

which shows that f gives rise to a nullhomotopic morphism (% f, 22 f). ]
Corollary 96. Let M = (R, R, «, 5) be a matrix factorization
1. Endgpp(M) is isomorphic to R/(«, )
2. Hompgpnr(M,3XM) is isomorphic to R/(a, )

3. M is homotopy equivalent to zero if and only if a and [ are coprime.

Proof. 1. The greatest common divisor and the least common multiple are both «,
therefore Hompgyr(M, M) = R/(Z,a) = R/(B,q)
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2. Hompyp(M,SM) = R/(%,(a, 8)) = R/(“*2 (, B)) = R/(a, B)

3. If (a, B) = 1, then Endgyr(M) = R/(a, §) vanishes, and so the composition of the
zero maps M — 0 and 0 — M is homotopic to the identity in both directions. Going
backwards, if M is homotopy equivalent to zero, then the identity is nullhomotopic,

and thus («, 8)|1, which means that « and § are coprime.
]

Proposition 97. M; and M, are homotopy equivalent if and only if there are f,g € R
such that L|$fg — 1 where L = lem((ov, £1), (a2, 52))

Proof. Two elements f,g € R define morphisms between M; and M, described by the

commutative diagram:
B1

R =5 R » R
X I I ]
R->2,r - 2,R
a7129l ‘%gl %2%
R Rr 2. R

These morphisms constitute a homotopy equivalence if the compositions in either direction
are homotopic to 1. The composition in either direction is given by the element ;—1 fg. So
f and g define a homotopy equivalence if and only if (a1, £1) and (az, 52) divide 5 fg —1,

which happens exactly when L|%fg — 1. O

Corollary 98. Two factorizations M; and M, of rank 1 are homotopy equivalent if and
only if (L, 1) =1.

Proof. if (L, é) # 1, then L and é share a non unit common factor ¢, which does not divide
é fg — 1, so they are not homotopy equivalent. On the other hand, suppose (L, é) = 1.
Then, by Bezout’s identity over PIDs, we can find h, —fg € R such that Lh + L(—fg) =
—1. Rearranging, we obtain Lh = éfg — 1, which means exactly that L\éfg — 1, by the

previous proposition, we are done. ]

Corollary 99. Let p € R be irreducible. Then the only matrix factorizations of p™ € R
of rank 1 up to homotopy equivalence are:

RLR™ R

RLRYELR

RYLRER

Proof. Suppose M; = (R, R,p",p""") and M; = (R, R,p’,p"7) are homotopy equivalent.
By symmetry, we can assume that i < j < n—j < n—i. In this case, L = p/ and é =pt
are coprime if and only if ¢ = j. O

Example 100. e For a field k, R = k[x], and 0 = 2%, we have precisely one indecom-
posible object M = (R, R, z,x) with Endgye(M) = k[z]/(x,z) = k, from which
it is clear that Dy,(k[z]/(2?)) = (k — mod) via the functor mapping M — k and
extended to the rest of the category through commutativity with direct sums.
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e The indecomposible objects of MCM(R/(z")) (R as above) are {R/x"|1 < i <
n — 1} (cf. [Sym22] Proposition 5.4.2), corresponding to the matrix factorizations
(R,R,z', 2™ Y for 1 <i<n-—1.

Leto =], p'»(?) be the prime factorization of o where v,(.) is the p-adic valuation. We
now give a condition equivalent to homotopy equivalence that describes the relationship
between the factorizations which is captured by homotopy equivalence.

Proposition 101. M; and M, are homotopy equivalent if and only if every prime p that
divides both elements in one of the factorizations, divides corresponding elements equally,
that is, if we set d; = (o, 5;), we get

ary B
042> (52

p|d1d2 - ’Up( ) 0

Proof. An easy calculation shows that

l _ lcm al,ag H lop ()= (02)
d CYl, 052

By corollary , we have the following equivalences:

M, and M, are homotopy equivalent

[
—p|lL = p)(a

)
<:>p|d1d2 — Up(— =0

)
<:>p|d1d2 — |Up(Oél) — Up(OéQ)| =0
=pldidy = vy(on) = vy(ae)

[]

Corollary 102. For 0 = af3, set n, and ng to be the number of distinct primes dividing
o and d = («a, ) respectively (up to multiplication by a unit). Then the number of
isomorphism classes of rank 1 factorizations which are homotopy equivalent to (R, R, «, [3)
ig 2" Nd,

Proof. To build a new factorization equivalent to ¢ = af in light of the proposition, we
have to move the full prime power factors of @ and [ around, keeping those in common
between « and [ fixed in place, this is the same as choosing a subset of distinct primes
dividing ¢ but not dividing d to go into the first factor, sending the rest to the second
factor, which can be done in 2™ 7" ways. O

Corollary 103. The number of homotopy classes of rank 1 factorizations of ¢ = [[}7, p, " )

> o)~

AC{1,...;ng} i€A

is given by

with the empty product being 1. In particular, H M F(R, o) vanishes if and only if o is
square free.
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Proof. Choosing a homotopy class is the same as choosing the greatest common factor
between the factors in the matrix factorization of o, which can be done by selecting a
subset of distinct primes factors of o, then choosing the powers of those primes to be
strictly between 0 and the valuation of ¢ at those prime, which can be done in v,(0) — 1
ways for each prime p. o is square free if and only if v,(0) —1 = 0 for all primes dividing o,
hence the only non-zero term in the sum is the empty product, which is 1, so HM F(R, o)
contains one object only, which must be the zero class. O

The last statement of the corollary corresponds to the fact that R/(o) is regular if
and only if o is square free (cf. [Sym22]).

6 Conclusion

We have reviewed the definition of the singularity category of a ring and mentioned
its charecterizations as the homotopy category of matrix factorizations and the stable
category of MCM modules. We have thoroughly studied, for the first time, the singularity
category of hypersurface rings over a PID. We have tried to use a similar approach to
study the case R[z]/(f) where R is a PID, the particular case k[x,y]/(zy) was of interest.
Although the singularity category is known to be the direct sum of two copies of (k—mod)
(cf. [Sym22, Proposition 5.4.13]), it is extremely difficult to show without some theory
of MCM modules (as well as more commutative algebra, see [Yos90, Page 75-76]). The
reason is the lack of something similar to the Smith normal form in this case.
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