
VARIOUS BACKGROUND ON THE LANGLANDS CORRESPONDENCE

SEBASTIAN BARTLING, JOCHEN HEINLOTH, JOHANNES SPRANG

Overview. The seminar this term is an attempt to collect some of the basic results and
objects that sometimes appear implicitly in talks related to the Langlands program, but are
often either taken as assumed background or are mentioned only very briefly. As this covers
a range of things, from number theory, representations of groups (complex, real, p-adic, finite
or profinite) and geometry that are not always covered in lecture courses, few people may
have seen all of this, but many of you might have seen some aspect.

All of these ideas start with abelian groups, in which case the arithmetic statements are
usually referred to as class field theory and the geometric statements are statements on
the relation of curves and their Jacobians. Already in the arithmetic situation, the only
known way to get analytic properties of Zeta- and L-functions is to use the geometric objects
appearing in class field. We will spend a large part of the seminar on these results (Talk 1-5),
where Talk 5 already explains how geometry can help to prove results of this type. Talks 6
and 7 give an idea on how the Fargues-Fontaine-curve allows to use these geometric ideas to
give a new proof of the main theorem of local class field theory.

Starting from talk 8 we will pass to non-abelian situations, mainly GL2 and GLn and
indicate why in the statements for general groups the notion of dual groups appears.

Talk 1: Local Class Field Theory

Summary: The aim of this talk is to give an overview of the main results of local class field
theory. In particular, we will discuss the explicit approach via Lubin-Tate formal group laws.
Main Reference: [Mi20b, Chapter I].
More detailed description: As a motivation, state the local and global Kronecker-Weber
Theorem without proof, and deduce

Q̂×
p

∼−→ Gal(Qab
p /Qp),

see Chapter V, (1.9) Corollary and (1.10) in [Neu99]. Recall the definitions of local and global
fields, see for example Definition 7.48, Remark 7.49 and first lines of Chapter 8 in [Mi20a].
Recall the definition of Frobenius elements and state the main theorems of local class field
theory (Local Reciprocity Law and Local Existence Theorem), see Chapter I, Theorem 1.1
and Theorem 1.4 in [Mi20b]. From now on, we will only consider finite extensions of Qp. In
the rest of the talk, sketch the explicit approach to local class field theory using Lubin-Tate
formal group laws. More precisely: Recall the definition of formal group laws, see Definition
2.3 and Definition 2.6 in [Mi20b, Ch. I]. Briefly discuss Remark 2.4 and Example 2.5 (b) of
[Mi20b, Ch. I]. State Definition 2.9 and discuss Example 2.10. Define Lubin–Tate groups as
in Summary 2.20 in [Mi20b, Ch. I] (without proof). Explain the construction of Kπ following
§3 until 3.7 of [Mi20b, Ch. I]. State Theorems 3.9 and 4.8 in [Mi20b, Ch. I] (without proof).

Talk 2: Global Class Field Theory

Summary: The aim of this talk is to give an overview of the main results of global class
field theory. As an applications, we will discuss the relation between 1-dimensional Galois
representations and Hecke characters.
Main reference: [Mi20b, Chapter V].
More detailed description: Define the ring of adeles AK , the group of ideles IK and
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state their basic properties, see e.g. §1 in [Lan94, Ch.VII]. Define the idele class group and
explain the relation between ideles and ray class groups, see Proposition 4.6 in [Mi20b, Ch.V].
Discuss norm maps between idele groups, see the discussion before Proposition 4.12 in [Mi20b,
Ch.V]. State the main theorems of global class field theory (without proof), see Proposition
5.2, Theorem 5.3, Theorem 5.5 in [Mi20b, Ch.V]. Define Hecke L-functions and Artin L-
functions of number fields, see §2 in [Lan94, Ch.XII]. State Artin’s conjecture, see Conjecture
5.1 in [deS03]. Use class field theory to show that Artin L-functions of 1-dimensional Galois
representations correspond to Hecke L-functions of finite Hecke characters, see §2, Theorem
2 in [Lan94, Ch.XII]. If time permits, you can also give other applications, e.g. you could
deduce the Theorem of Kronecker–Weber from global class field theory, another option would
be to deduce the quadratic reciprocity law from Artin Reciprocity; see, for example, [Cox,
Theorem 8.8, Theorem 8.12].

Talk 3: Harmonic Analysis on Global Fields

Summary: The aim of this talk is to give an introduction to harmonic analysis on locally
compact abelian groups with an emphasize on groups of number theoretic significance. As
application of the adelic Poisson summation formula, we will deduce Riemann–Roch for curves
over finite fields.
Main Reference: [Po15].
More detailed description: Recall the existence of Haar measures on locally compact
abelian groups and their compatibility in short exact sequences, see Definition 2.12, Theorem
2.13 and §3.2 in [Po15]. Define (unitary) characters and the Pontryagin dual of a locally
compact abelian group, see Definition 3.3, Definition 3.4 and Definition 3.7 of [Po15]. Give
the following examples: the additive group of local and global fields, the additive group of
the adeles (A,+), see table before Example 3.10 in [Po15] (cf. Theorem 4.4, Proposition
5.1 and Corollary 5.4). Explain the Fourier inversion formula and Plancherel’s theorem for
locally compact abelian groups, see Definition 3.11 until Corollary 3.14 of [Po15]. Describe
the self-dual Haar measure explicitly in the case of local fields, see Proposition 4.8 of [Po15].
Introduce the Tamagawa measure on A and state that the volume of A/K is 1, see Proposition
5.5 of [Po15]. Introduce Schwartz–Bruhat functions and sketch the proof of the adelic Poisson
summation formula, see Definition 4.6 and Theorem 5.7 of [Po15]. Explain that the Poisson
summation formula for function fields implies Riemann–Roch for curves over finite fields, see
§5.6 of [Po15].

Talk 4: Tate’s Thesis

Summary: The aim of this talk is to explain the key ideas of Tate’s thesis. As motivation,
we will first discuss the functional equation of the Riemann zeta function. Afterwards, we will
prove the functional equation of global zeta functions using the Poisson summation formula
on the adeles and apply it to Hecke L-functions.
Main reference: [Po15].
More detailed description: As a starting point state the functional equation of the Rie-
mann zeta function, see Theorem 1.1 in [Po15]. Recall the Fourier inversion formula, the
Poisson summation formula and explain that the functional equation of the theta function
is a direct consequence of the Poisson summation formula, see Definition 1.3 to Theorem
1.7 in [Po15]. To motivate the Fourier-theoretic approach in Tate’s thesis, sketch the proof
of the functional equation of the Riemann zeta function, see 1.4. of [Po15]. Introduce the
(multiplicative) Haar measure on the ideles, see §5.9 of [Po15]. Define the global zeta integral
of a Schwartz–Bruhat function and sketch the proof of the functional equation of global zeta
integrals, see Theorem 5.16 of [Po15]. Sketch the proof of the functional equation for Hecke
L-functions for number fields, see §5.11 of [Po15]. If you want, you can restrict to the case
K = Q, i.e. Dirichlet characters, see Theorem 6.3.4 in [Dei12]. If time permits, explain how
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to deduce the analytic class number formula from a volume computation on the ideles, see
§7.5. and §7.6. of [RV99].

Talk 5: Geometric unramified class field theory

1. Let K = OX,η be the function field of a smooth, proper, geometrically connected
curve X over Spec(Fq), q = pa. Recall the statement of unramified global class field
theory for K :

̂GL1(K)\GL1(AK)/GL1(O) ≃ (Gal(K/K)unr)ab,

(the hat denotes profinite completion) given by (ax) 7→
∏

x Frob
ax
x .HereO =

∏
x∈|X| ÔX,x

(product runs over all closed points).

The aim of the talk is to geometrize both sides of the isomorphism in 1. and sketch a proof of
a categorical and geometric version, which works over any base field (including the geometric
situation k = C).

2. State [Sta, Tag 0BQM] in the case of interest here, i.e. πet
1 (X, η) ≃ Gal(K/K)unr.

This geometrizes the Galois side.
3. Explain that the double quotient

GL1(K)\GL1(AK)/GL1(O),

where O =
∏

x∈|X| ÔX,x is nothing else than the set of line bundles on X, because

GL1(AK)/GL1(O) is a complicated description of divisors and the map GL1(K) =
K∗ → GL1(AK)/GL1(O) maps a function to its divisor.

4. Reformulate 1. as follows: there exists a bijection between isomorphism classes of

continuous characters χ : πet
1 (X)ab → Z∗

ℓ and characters ρ : Pic(X) → Z∗
ℓ , where ℓ is

a prime different from p, with the property that if χρ corresponds to ρ, we have that

ρ(O([x])) = χρ(Frobx).

Now let k be a field and let X be a smooth, proper and geometrically connected curve
over k. The aim of the rest of the talk is to sketch that there is an equivalence of categories
between character Λ-local systems on Pick(X) and rank one étale Λ-local systems on X (Λ
could for simplicity be torsion, prime to the characteristic of k or Z if k = C). Depending on
how much time is left one can cover the following points:

1. Introduce DivdX/k ≃ X(d) (c.f. [Klei, Definition 3.6, Exercise 3.8, Remark 3.9]; you

do not have to prove this), the Picard scheme Pick(X) ([Klei, Definition 4.1]) of X/k
and the Abel-Jacobi morphism ([Klei, Definition 4.6]) (see also [To11, Section 1.3]).
Explain why for d ≥ 2g − 2 (d ≥ g if g = 0) the Abel-Jacobi morphism has as
geometric fibers projective spaces by the Riemann-Roch theorem ([To11, Proposition
2.1.4]). Recall that projective spaces are geometrically simply connected (For k = C
this is easy, but it also holds in arithmetic situations, where one can reduce to the
projective line and use Hurwitz’ formula; or argue using Grothendieck’s classification
of vector bundles c.f. [FF18, Remarque 8.6.2].).

2. Define the notion of a character local system on Pick(X) using the group structure
([FGSV, Definition 3, Bhargav Bhatt, Geometric CFT]). Explain how a character

Zℓ-local system on Pick(X), for k = Fq gives a character ρ : Pic(X)(Fq) → Z∗
ℓ (see

discussion before [FGSV, Theorem 5, Bhargav Bhatt, Geometric CFT]), but you do
not have to prove [FGSV, Theorem 5, Bhargav Bhatt, Geometric CFT].

3. State without proof the homotopy exact sequence [Sta, Tag 0C0J].
4. Lead us through the proof that pull back along the Abel-Jacobi morphism induces

the desired equivalence of categories following Bhatt’s sketch [FGSV, Theorem 6,
Bhargav Bhatt, Geometric CFT] (see also [To11, Theorem 2.2.1]).
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Talk 6:The Fargues-Fontaine curve

The aim of this talk is to give an overview of the Fargues-Fontaine curve ([FF18]). A nice
overview article is [Mo19]. We will not be able to give details about proofs here unfortu-
nately, but it is more important to explain why this object appears when one thinks about
geometrizing LCFT.

1. Roughly motivate the Fargues-Fontaine curve as follows (beware; this is not a histor-
ically accurate motivation!): let E be a non-archimedean local field and we want to
construct an interesting geometric object X, such that the étale fundamental group of
X is the absolute Galois-group of E. From the persective of étale cohomology Spec(E)
looks like a compact Riemann surface (Tate-Nakayama duality, cohomological dimen-
sion), so that we would like X to be something like a Riemann surface (which rules
out just taking X = Spec(E)). If you want you can motivate the construction of the
curve in the equal characteristic case using Drinfeld’s lemma. Point out the difference
to the story in the previous talk: we are now geometrizing the whole absolute Galois
group of E and not just the unramified part! See [S21, Lecture 2].

2. Now let E be a non-archimedean (NA) local field of residue characteristic p. Let F be
an algebraically closed, complete NA-field, which is an extension of the residue field
of E. Write OF = {x ∈ F : |x| ≤ 1} for the ring of integers and ϖ ∈ OF a pseudo-
uniformizer, i.e. 0 < |ϖ| < 1. Introduce the ramified Witt vectors WOE

(OF ) =
{
∑

n≥0[xn]π
n : xn ∈ OF } [FF18, Section 1.2]. Introduce YE,F = Spa(WOE

(OF ),WOE
(OF ))−

V (π · [ϖ]) as a set and draw a picture. You do not have to explain the formalism
of adic spaces and how the structure sheaf is defined in detail; maybe just say some
words about this category. One can however explain that for I = [ρ1, ρ2] ⊂ (0, 1)
with ρ1, ρ2 ∈ |F |, one can describe YI = Spa(BI , B

+
I ), where BI is the completion

of WOE
(OF )[

1
π ,

1
[ϖ] ] w.r.t certain norms ([FF18, Exemple 1.6.3]). Explain why the

Frobenius φF acts on YE,F in a properly discontinous way ([SW20, Beginning of
section 13.5.] or [FS21, Proposition II.1.16]) and define Xad

E,F = YE,F /φ
Z
F ([SW20,

Definition 13.5.1] or [FS21, Definition II.1.15]). Define the algebraic curve ([SW20,
Definition 13.5.2] or [FS21, Proposition II.2.7]) and state the fundamental properties
of this construction ([SW20, Theorem 13.5.3]). State that regardless of the choice of
F, we have that

H0(XE,F ,OXE,F
) = E

(this is very important for geometrizing the automorphic side) and that

H1(XE,F ,OE,F ) = 0

[FF18, Points 1., 2., 3. in Section 8.2.1.1] (which makes you think that the curve
has genus zero c.f. [FF18, Proposition 5.4.2. and Exemple 5.4.3] for the difference
- besides the obvious one that the Fargues-Fontaine curve is not of finite type over
Spec(E) - with the projective line).

Depending on how much time is left, you can discuss the following:

3. State the classification of vector bundles on XE,F (see [FF18, Définition 5.6.22] for
the definition of the vector bundles OXE,F

(λ) and [FF18, Théorème 5.6.26.(3)] for the
statement of the classification) and prove thatXE,F is geometrically simply connected
([FF18, Théorème 8.6.1]).

Talk 7: Local class field theory via the Fargues-Fontaine curve

The aim here is to give a rough overview of the article [Fa20]. Warning: For this talk, you
need to make an effort to make the ideas of background material - formally perfectoid spaces,
diamonds, Banach-Colmez spaces appear - digestible without going into too many definitions.
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1. Recall the statement of LCFT: let E be a NA local field and WE the Weil group,
then there is an isomorphism

ArtE : E∗ ≃ W ab
E ,

which is uniquely characterized via Lubin-Tate theory.

The aim is to geometrize both sides of the above isomorphism.

2. Introduce (affinoid) perfectoid spaces [SW20, Definition 6.1.1, Definition 7.1.2] and
introduce YS , XS ([FS21, Definition II.1.15]).

3. Explain the definition of Divd ([Fa20, Définition 2.6]) and why local systems on Div1

are relevant for geometrizing continuous characters χ : W ab
E → Λ ([Fa20, Proposition

3.1]). It would be great if there is time to explain the connection to Lubin-Tate
theory [Fa20, Proposition 2.16] (this makes sure that the correspondence we construct
geometrically agrees with LCFT).

4. Introduce the Picard-stack [Fa20, Définition 2.4] and describe it as in [Fa20, Discus-
sion after Définition 2.4]. Mention [Fa20, Rémarque 2.5]. Explain how this can be
used to geometrize continuous characters over E∗.

5. Introduce the Abel-Jacobi morphism [Fa20, Définition 2.7] and state the main result
on simply connetedness of geometric fibers in the equal characteristic case [Fa20,
Théorème 5.4 and section 6].

Talk 8: The starting point for other groups: Langlands’ classification of
representations of real and complex groups

Strangely enough, even though the Galois group Gal(C/R) = Z/2Z is very small, one of the
starting points of a correspondence that gives a version of class field theory for non-abelian
groups G instead of GL1 = Gm seems to have been the classification of representations of
real reductive groups in terms of representations of the Weil group, due to Langlands [La73].

To get an idea about this, it is probably best to start with the representations of GLn(R)
and GLn(C) as in [Kn94] and to describe these in terms of representations of Weil-groups of
R and C. This is the first key thing we should take away from the talk.

A general reductive group over R, like SO(n) may not contain split tori that were important
for GLn. This makes the theory richer, as not every representation is induced from simple
subgroups as in the example of GLn. The main point of the second part of the talk is to
introduce the dual group which shows up in this setup and to explain this notion in some
of the basic examples. The main statements then take a bit of time to digest. A classical
exposition of the ideas of [La73] is [Bo79]. This has later been expanded by Adams-Barbasch-
Vogan [ABV]. It would be great if we could see the main protagonists, i.e. the L-groups and
spaces of parameters that appear in [ABV, Theorem 1.18].

(Remark: Very recently there has been a geometric approach by Scholze that may finally
give an intrinsic explanation of the parametrization. This is certainly beyond a first talk on
the subject.)

Talk 9: Adelic descriptions of classical spaces and Hecke operators

You may have seen Hecke operators on modular forms, operators that are usually defined in
an elementary way and then been surprised to see adelic quotients and Hecke algebras defined
as algebras of functions on double cosets. The first part of this talk should explain why these
are related and why complicated looking adelic quotients are sometimes helpful descriptions
of simpler quotients. A good starting point is the case of GL2, where space of lattices and
quotients of the upper half plane admit an adelic description [Del, Section 0]. In this language
the Hecke-correspondence and Hecke-operators get a group-theoretic description [Del, Section
2.3]. I would find it helpful to turn the presentation of [Del] around and start with the classical
picture, i.e. the space of lattices (closely related to elliptic curves) and then explain that the
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adelic picture helps to understand the relation between Hecke operators for different primes,
e.g. why the Hecke-operators for different primes commute or how the algebra generated by
Hecke operators decomposes as a product of algebras for different primes.

As a generalization mention the strong approximation theorem and explain why this implies
that the adelic quotient can be identified with the quotient of the archimedian places by an
arithmetic subgroup.

In the second part we pass to function fields K = k(C) of a smooth curve C and see why
there the adelic quotients describe principal bundles on curves and see Hecke operators there.

Again we start with G = GLn in which case it is elementary to see that the adelic quotient
GLn(K)\GLn(A)/GLn(O) describes the category Bunn(k) of vector bundles on C: Taking a
bundle, trivializing it over an open subset and locally around all points of the curve, the gluing
cocycle gives an element in the double quotient (e.g. [Zhu, Lemma 4.3.1]) and conversely,
in the quotient GLn(Kx)/GLn(O∧

X,x) a matrix computation shows that the quotient taken

without completions gives the same set, given (gx) one can thus define a locally free sheaf Eg
by defining local sections as elements s ∈ k(X)n such that gx.v ∈ On

X,x ⊂ k(X)n.

(For general groups a similar result holds see [Zhu, Lemma 4.3.1], but the gluing argument
is more subtle, called Beauville-Laszlo gluing ([Zhu, Theorem 1.4.2]). With some care, it can
be deduced from fpqc-descent, but there are more general versions of the fact that one can
sometimes glue objects from completions along closed subschemes.)

Explain that the analog of Hecke corrrespondences for lattices now describes modifications
of bundles, i.e. pairs of bundles E ′ ⊂ E such that E/E ′ ∼= k(x)m for some 1 ≤ m ≤ n. (This
also links back to the lecture on geometric class field theory.)

If time is left it would be very nice to state the structure of the Hecke algebra, i.e. the Satake
isomorphism. Hecke operators come from functions on the double cosetG(O∧

X,x)\G(Kx)/G(O∧
C,x).

These double cosets are enumerated by X∗(T )/W (for GLn these are diagonal matrices with
entries powers of a uniformizer, up to permutation by the elementary divisor theorem). Irre-
ducible representations of a reductive group (over C) are similarly enumerated by characters
(up to conjugation by the Weyl group) X∗(T ) (or dominant characters). In the language of
talk 8, the characters of the dual group are given by the cocharacters of G and the Satake
isomorphism states that this combinatorial coincidence actually comes from an isomorphism
of the Hecke algebra for G and the representation ring of the dual group. Moreover this has
a categorical version ([MV07, (13.1)], [Zhu, Theorem 5.3.2 and Theorem 5.2.9]). It would be
nice to indicate this statement, but without going into the definitions of perverse sheaves.

Talk 10: Drinfeld’s construction of automorphic sheaves for GL2

To end the seminar we would like to indicate how the first automorphic sheaves were
constructed by Drinfel’d. The main plan is to follow Laumon’s Bourbaki talk [Lau02] on
the GLn argument that was found much later, but restrict to the case n = 2, which reduces
to an argument that is very close to Drindel’d’s original argument and simplifies all of the
constructions. A key technical result [Dr83, Appendix] used in this case is closely related to
the proof of geometric class field theory from talk 5.

Start by stating the main result, explaining that for any irreducible rank 2 local system E
on a curve there exists a Hecke-eigenshaef sheaf AE on Bun2 with eigenvalue E, in particular
the trace function of AE is an automorphic form fE with Hecke eigenvalues described by the
representation defined by E.

For the construction, some background may be helpful: A formula for the function fE was
known on GLn(A)/GLn(O), but it was not known whether it is constant on the fibers of
the map to Bunn(k), i.e. if it was invariant under GLn(k(X)), this argument used a result
of Shalika [Sha74], who explained that fE could be constructed by a Fourier transform of a
function that is a product of local terms. Drinfel’d found a geometric way to rephrase this
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construction by Fourier transform and tried to find a way to get descent to Bun2 by an analog
of the argument from geometric class field theory.

Laumon’s Bourbaki talk explains how one can set up this construction in a way that again
works both for curves over Fq and C. If one restricts this to GL2 all inductive arguments
disappear.

Please talk to the organizers to discuss which points should be highlighted.
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