


p-adic Hodge Theory

Motivation. The objective of this seminar would be to introduce the theory
of p-adic Galois representations and the basics of p-adic Hodge theory. Some
motivation for studying these concepts can be found in the study of the abso-
lute Galois group of Q: GQ := Gal(Q/Q). Although this group evades direct
study, one comes across some special distinguished subgroups (GQ)p < GQ for
p a prime, which then can be identified with GQp

. The study of these latter
groups, or more generally, of the absolute Galois groups GK , where K is a finite
extension of Qp, can allow us to deduce more information about GQ by using
the information we obtain at each prime.

In order to study these groups, we make use of Galois representations

ρ : GK → AutE(V ),

where E is a field and V is an E-vector space. Although we may consider several
possibilities for E, we will focus on the case E = Qp, which leads to the most
information. These are the p-adic Galois representations.
Overview. Some of the concepts we would see in the seminar are:

� Hodge-Tate representations and decompositions.

� Étale φ-modules.

� Witt vectors.

� Admissible representations.

� Period rings.

Prerequisites. It would be useful to have some background on representation
theory and local class field theory.
Goal. This could depend a bit on the structure of the talks and how far we
actually get through the material, so there is no specific goal in mind besides
understanding the theory.
Applications. One of the more interesting applications resides in the relation-
ship between de Rham and étale cohomology of smooth projective varieties X
over Qp. Thanks to the previously mentioned period rings, there is a way to
stablish an isomorphism between these two cohomologies:

Hi
dR(X)⊗Qp

BdR
∼= Hi

ét(XQp
,Qp)⊗Qp BdR,

where BdR is the mentioned period ring. Besides this, there are more applica-
tions regarding the study of the representations of certain Galois groups, or of
the Tate modules of abelian varieties.

References

1 Brinon, O. & Conrad, B., CMI Summer School notes on p-adic Hodge
theory, 2009.

2 Fontaine, J. & Ouyang, Y., Theory of p-adic Galois Representations.
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p-divisible groups

Motivation. In classical group theory, a group G is said to be p-divisible if the
multiplication by p map [p] : G → G is surjective. One of the most interesting
examples is the Prüfer group, defined as the quotient Qp/Zp. In fact, we can
express this group as the following inductive limit:

Qp/Zp
∼= lim−→

k

1

pk
Z/Z.

Interestingly, this group has another property: it is p-primary torsion, i.e. every
element of Qp/Zp is a torsion element with order a power of p.

Similarly, if E/K is an elliptic curve, then its p-primary torsion can be
written as

E(K)[p∞] = lim−→
k

E(K)[pk] ∼= lim−→
k

(
Z/pkZ× Z/pkZ

)
,

where the last isomorphism holds if p is invertible in K. Note that each of the
E(K)[pk] is a finite group of rank phk, where h = 2dimE = 2.

These examples motivate the following construction.

Definition 1. A p-divisible group over an affine scheme S is an inductive system

G = lim−→
v∈N

Gv,

where the Gv are finite flat commutative groups over S such that there exists a
natural number h (the height of G) satisfying:

(1) Gv has order phv,

(2) for each v there exists an exact sequence 0 → Gv
iv−→ Gv+1

[pv]−−→ Gv+1,
with [pv] being the multiplication by pv map.

Overview. Here are some of the topics we would cover in this seminar:

� Finite flat group schemes.

� Grothendieck topologies and fpqc sheaves.

� Formal groups.

� Hodge-Tate decompositions.

Prerequisites. In order to go faster through the first sections, it would be
useful if we can assume several facts regarding group schemes.
Goal. A nice objective would be to try to understand Grothendieck-Messings
deformation theory. In summary, in this theory one assigns certain objects to p-
divisible groups, which are called Dieudonné crystals, and then shows that there
is an antiequivalence of categories between the category of p-divisible groups over
a field K and the category of Dieudonné crystals. The nice consequence of this
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is that working with Dieudonné crystals is usually nicer than with p-divisible
groups.
Applications. Some useful places where p-divisible groups appear are local
class field theory, moduli spaces of abelian varieties... For more precise examples,
the reader may check Jakob Stix’s notes.

References

1 Berthelot P., Messing W., Théorie de Dieudonné Cristalline I, Journées
de Géométrie algébrique, Rennes, 1978 (Astérisque Vol. 63).

2 Berthelot P., Breen L., Messing W., Théorie de Dieudonné Cristalline I,
Lecture Notes in Mathematics, Springer Verlag.

3 Stix J., A course on finite flat group schemes and p-divisible groups, Lec-
ture Notes.
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Compactifications of Locally Symmetric Varieties
Locally symmetric varieties are certain double quotients of the form

X := Γ\G/K,

where G = G(R) denotes the real points of a semisimple algebraic group G,
K ⊆ G is a maximal compact subgroup and Γ ⊆ G is a discrete subgroup. The
simplest example is

M := SL2(Z)\SL2(R)/SO2(R) ∼= SL2(Z)\H,

where H ⊆ C denotes the upper half-plane and SL2(Z) acts on H through
Moebius transforms.

Somewhat surprisingly, despite the fact that all the above groups are real,
this quotient is naturally a complex algebraic variety; in fact it is just A1(C).
This is true more generally provided that G/K is a Hermitean symmetric do-
main of classical type and Γ is arithmetic. Prominent examples of such X are
(the complex points of) Shimura varieties.

In any case, locally symmetric spaces are very interesting as they feature
prominently in numerous different mathematical areas and can be understood
and studied from various angles:

• Moduli Theory: M is the (coarse) moduli space of elliptic curves,

• Automorphic Representation Theory: M carries a line bundle L and sec-
tions of L⊗k are precisely modular functions of weight k on H,

• Riemannian Geometry: M is a complete Riemannian manifold with one
end, a so-called cusp.

Note that we may compactify M ∼= A1(C) ⊆ P1(C) =: M . Now, also M has a
natural interpretation in all of the above pictures:

• Moduli Theory: M is the (coarse) moduli space of semistable curves of
genus one,

• Automorphic Representation Theory: L extends to a line bundle L on M

such that sections of L⊗k
are precisely modular forms of weight k on H,

• Riemannian Geometry: M is the geodesic completion of M ; the single cusp
corresponds precisely to the only proper parabolic subgroup P ⊂ SL2(R).

This picture generalises as follows: X can always be compactified into a nor-
mal, proper, algebraic variety X

BBS
by adding finitely many symmetric spaces

of lower dimension in the boundary corresponding to the rational parabolic
subgroups of G. Moreover, X

BBS
is projective. It is called the Bailey-Borel-

Compactification of X. Unfortunately, it is usually not smooth and so we will
also try to understand different choices of compactifications X which are smooth.
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The primary goal of this seminar would be to try to understand X and its
compactifications as explicitly as possible and ultimately prove the existence
and projectivity of the above X.

To do so, in the first part of the seminar we would spent some time on
learning about reductive algebraic groups, their representation theory and also
toric varieties. These methods will allow us to understand the complicated
geometry of X in terms of discrete data later on.

The tools we would use are mostly from representation theory and/ or dis-
crete/ convex geometry. We will try to avoid Riemannian geometry whenever
possible, thought it might be nice to see some parts of this story as well. In any
case, we will try to keep the prerequisites minimal (for the most part it should
be fine to think about classical varieties instead of schemes for example).

At the end of the term there should be some time left to get a peak at how the
understanding of X and its compactifications are useful to study automorphic
representation theory and/or what X\X parametrises from the moduli theoretic
perspective.

References
[1] Ash A., Mumford D., Rapoport M., Tai Y., Smooth Compactifications of

Locally Symmetric Varieties (with the collaboration of P. Scholze), 2nd Edi-
tion, Cambridge Mathematical Library, 2010.
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Intersection Theory

Lukas Bröring

14th July 2023

The idea is to learn some classical intersection theory by proving one of the
following theorems:

Theorem (Grothendieck-Riemann-Roch). Let f : X → Y be a proper morph-
ism of non-singular varieties. Then for all α ∈ K(X), we have

ch(f∗α) · td(TY ) = f∗(ch(α) · td(TX)).

Theorem (Hirzebruch-Riemann-Roch). Let E be a vector bundle on a non-
singular complex variety X. Then

χ(X,E) =

∫
X

ch(E) · td(TX).

During the seminar, we will not only learn what the notation in these the-
orems means but we will also explore some more topics in algebraic geometry:

• blow ups

• intersection products

• Chow groups and Chow rings

• Chern classes

The main reference for the seminar will be either Fulton’s book Intersection
Theory or the book by Eisenbud and Harris 3264 and all that.
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A quadratic Bézout’s Theorem

Lukas Bröring

14th July 2023

The classical Bézout’s theorem is given as follows:

Theorem (Bézout). Fix an algebraically closed field k. Let f1, . . . , fn be hyper-
surfaces in Pn, and let di be the degree of fi for each i. Assume that f1, . . . , fn
have no common components, so that f1∩· · ·∩fn is a finite set. Then, summing
over the intersection points of f1, . . . fn, we have∑

points

ip(f1, . . . , fn) = d1 · · · dn,

where ip(f1, . . . , fn) is the intersection multiplicity of f1, . . . , fn at p.

It is a bit of a pity that this theorem only works for algebraically closed
fields. In order to remove that assumption, one needs to move the computation
to the Grothendieck-Witt ring of quadratic forms. There one can obtain the
following result:

Theorem. Fix a perfect field k. Let
∑n

i=1 di ≡ n+1 mod 2, and let f1, . . . , fn
be hypersurfaces in Pn of degree d1, . . . , dn that intersect transversely. Given
an intersection point p of f1, . . . , fn, let J(p) be the signed voulme of the par-
allelipiped determined by the gradient vectors of f1, . . . , fn at p. Then summing
over the interseciton points of f1, . . . , fn, we have∑

points

Trk(p)/k⟨J(p)⟩ =
d1 · · · dn

2
H ∈ GW(k),

where H is the hyperbolic form ⟨1⟩ + ⟨−1⟩ and Trk(p)/k : GW(k(p)) → GW(k)
is given by post-composing with the field trace.

For k algebraically closed, this gives back the classical Bézout’s Theorem.
For k = R or k a finite field, this gives back versions of Bézout’s Theorem
that were already known. Therefore this theorem not only provides a Bézout’s
Theorem for all perfect fields but also unifies the statements of the earlier-known
Bézout’s theorems.

The idea for a seminar on this topic would be to study the proof of this
theorem and to, along the way, also learn more about intersection theory over
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arbitrary (perfect) fields. Furthermore, we will learn about how intersection
theory can be done in the quadratic setting.

The main source for the seminar will be Stephen McKean’s paper An arith-
metic enrichment of Bézout’s Theorem. The paper is not that long, so that
we will have ample time to study the necessary prerequisites to understand the
proof.
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