

An overview on p-adic L-functions

Luca Marannino

Universität Duisburg-Essen
December 17th, 2021

Classical L-functions

Classically, an L-function is a meromorphic function on \mathbb{C} (often entire) associated to a mathematical object X (usually coming from geometry, representation theory, number theory ...).

The construction of a complex L-function usually goes mutatis mutandis as follows:

Classical L-functions

Classically, an L-function is a meromorphic function on \mathbb{C} (often entire) associated to a mathematical object X (usually coming from geometry, representation theory, number theory ...).

The construction of a complex L-function usually goes mutatis mutandis as follows:
(i) Write a series (a so-called Dirichlet series) of the form

$$
L(s)=L(X, s)=\sum_{n=1}^{+\infty} \frac{a_{n}}{n^{s}}
$$

where the coefficients $\left\{a_{n}\right\}_{n \geq 1} \subset \mathbb{C}$ satisfy growth conditions that ensure that L defines a holomorphic function on the right half-plane $\{\operatorname{Re}(s)>r\} \subset \mathbb{C}$ for some $r \in \mathbb{R}, r \geq 1$. The coefficients $\left\{a_{n}\right\}$ encode information about the object X.

Classical L-functions

(ii) Find a gamma factor γ (i.e. a suitable meromorphic function on \mathbb{C}, often related to the usual gamma function Γ) such that the function $\Lambda(s):=L(s) \cdot \gamma(s)$ extends to a meromorphic function on \mathbb{C} satisfying a functional equation of the form

$$
\Lambda(s)=c_{L} \cdot \Lambda(k-s)
$$

for some $k \geq r$ and $c_{L} \in \mathbb{C}, c_{L} \neq 0$. Usually $k \in \mathbb{Z}$.

Classical L-functions

(ii) Find a gamma factor γ (i.e. a suitable meromorphic function on \mathbb{C}, often related to the usual gamma function Γ) such that the function $\Lambda(s):=L(s) \cdot \gamma(s)$ extends to a meromorphic function on \mathbb{C} satisfying a functional equation of the form

$$
\Lambda(s)=c_{L} \cdot \Lambda(k-s)
$$

for some $k \geq r$ and $c_{L} \in \mathbb{C}, c_{L} \neq 0$. Usually $k \in \mathbb{Z}$.
(iii) Use the above functional equation to extend L to a meromorphic function on \mathbb{C}. which we will denote again by $L=L(X, s)$.

Why are L-functions interesting?

One common (and vague!) way to answer this question is that L-functions contain a lot of arithmetic information about the object X.

Why are L-functions interesting?

One common (and vague!) way to answer this question is that L-functions contain a lot of arithmetic information about the object X.

A prototypical example of this phenomenon is the so-called analytic class number formula (due to Dirichlet, Kummer, Dedekind, ...).

If K is a number field (i.e. a finite field extension of \mathbb{Q}) one can attach to K the so-called Dedekind zeta function ζ_{K}, prove the analytic continuation and functional equation and finally show that

$$
\lim _{s \rightarrow 1}(s-1) \zeta_{K}(s)=\frac{2^{r_{1}} \cdot(2 \pi)^{r_{2}} \cdot \operatorname{Reg}_{K} \cdot h_{K}}{w_{K} \cdot \sqrt{\left|\Delta_{K}\right|}}
$$

Why are L-functions interesting?

One common (and vague!) way to answer this question is that L-functions contain a lot of arithmetic information about the object X.

A prototypical example of this phenomenon is the so-called analytic class number formula (due to Dirichlet, Kummer, Dedekind, ...).

If K is a number field (i.e. a finite field extension of \mathbb{Q}) one can attach to K the so-called Dedekind zeta function ζ_{K}, prove the analytic continuation and functional equation and finally show that

$$
\lim _{s \rightarrow 1}(s-1) \zeta_{K}(s)=\frac{2^{r_{1}} \cdot(2 \pi)^{r_{2}} \cdot \operatorname{Reg}_{K} \cdot h_{K}}{w_{K} \cdot \sqrt{\left|\Delta_{K}\right|}}
$$

Many important open conjectures in number theory can be phrased in terms of L-functions.

Dirichlet characters

Let $N \in \mathbb{Z}, N \geq 2$. A Dirichlet character defined modulo N is a function $\chi: \mathbb{Z} \rightarrow \mathbb{C}$ such that

- $\chi(1)=1, \chi(N)=0$
- $\chi(n)=\chi(m)$ if $n \equiv m \bmod (N)$
- $\chi(n m)=\chi(n) \chi(m)$ for all $n, m \in \mathbb{Z}$

We say that χ is trivial if $\chi(\mathbb{Z}) \subseteq\{0,1\}$.
The constant function $\mathbf{1}: \mathbb{Z} \rightarrow \mathbb{C}(\mathbf{1}(n)=1$ for all $n \in \mathbb{Z})$ is the unique (and trivial!) Dirichlet character modulo 1.

Dirichlet L-functions

The Dirichlet L-series associated to χ is

$$
L(\chi, s)=\sum_{n=1}^{+\infty} \frac{\chi(n)}{n^{s}}
$$

This series converges for $\operatorname{Re}(s)>1$. Actually $L(\chi, s)$ defines a holomorphic function for $\operatorname{Re}(s)>0$ if χ is not trivial. In this case $L(\chi, 1) \neq 0$.

If χ is trivial then $(s-1) \cdot L(\chi, s)$ can be continued to a holomorphic function for $\operatorname{Re}(s)>0$ (not vanishing at $s=1$).

These two different behaviours are the key ingredients that allowed Dirichlet to prove his theorem about primes in arithmetic progressions in 1837.

Riemann ζ function

When $\chi=\mathbf{1}$ then $L(\mathbf{1}, s)=\zeta(s)$ is the Riemann zeta function.
Euler proved (in 1737) that it admits a product expansion as

$$
\zeta(s)=\prod_{p} \frac{1}{1-p^{-s}} \quad \text { for } \operatorname{Re}(s)>1
$$

Riemann ζ function

When $\chi=\mathbf{1}$ then $L(\mathbf{1}, s)=\zeta(s)$ is the Riemann zeta function.
Euler proved (in 1737) that it admits a product expansion as

$$
\zeta(s)=\prod_{p} \frac{1}{1-p^{-s}} \quad \text { for } \operatorname{Re}(s)>1
$$

In 1859 Riemann proved that:
(i) there is an entire function ξ such that when $\operatorname{Re}(s)>1$ it holds

$$
\xi(s)=\frac{1}{2} \cdot s(s-1) \cdot \pi^{-s / 2} \cdot \Gamma\left(\frac{s}{2}\right) \cdot \zeta(s)
$$

(ii) the function ξ satisfies $\xi(s)=\xi(1-s)$ for all $s \in \mathbb{C}$.

Hence ζ can be continued to a meromorphic function on \mathbb{C} with a unique simple pole at $s=1$

Riemann hypothesis

It is not too hard to prove that
(i) $\Gamma(n+1)=n$! and $\Gamma\left(n+\frac{1}{2}\right)=\frac{(2 n)!}{4^{n} \cdot n!} \sqrt{\pi}$ for $n \in \mathbb{N}$
(ii) Γ has simple poles at $s=-n$ for $n \in \mathbb{N}$ and is holomorphic elsewhere.

Riemann hypothesis

It is not too hard to prove that
(i) $\Gamma(n+1)=n$! and $\Gamma\left(n+\frac{1}{2}\right)=\frac{(2 n)!}{4^{n} \cdot n!} \sqrt{\pi}$ for $n \in \mathbb{N}$
(ii) Γ has simple poles at $s=-n$ for $n \in \mathbb{N}$ and is holomorphic elsewhere.

Since $\zeta(s) \neq 0$ when $\operatorname{Re}(s)>1$, we obtain that for $\operatorname{Re}(s)<0$ it can happen $\zeta(s)=0$ if and only if $s=-2 n$ for $n \in \mathbb{Z}_{\geq 1}$. These are the so-called trivial zeroes of ζ. The interesting zeroes of ζ lie in the strip $\mathcal{S}=\{0 \leq \operatorname{Re}(s) \leq 1\}$ and $\zeta\left(s_{0}\right)=0$ for some $s_{0} \in \mathcal{S}$ if and only if $\zeta\left(1-s_{0}\right)=0$.

Riemann hypothesis

It is not too hard to prove that
(i) $\Gamma(n+1)=n$! and $\Gamma\left(n+\frac{1}{2}\right)=\frac{(2 n)!}{4^{n} \cdot n!} \sqrt{\pi}$ for $n \in \mathbb{N}$
(ii) Γ has simple poles at $s=-n$ for $n \in \mathbb{N}$ and is holomorphic elsewhere.

Since $\zeta(s) \neq 0$ when $\operatorname{Re}(s)>1$, we obtain that for $\operatorname{Re}(s)<0$ it can happen $\zeta(s)=0$ if and only if $s=-2 n$ for $n \in \mathbb{Z}_{\geq 1}$. These are the so-called trivial zeroes of ζ. The interesting zeroes of ζ lie in the strip $\mathcal{S}=\{0 \leq \operatorname{Re}(s) \leq 1\}$ and $\zeta\left(s_{0}\right)=0$ for some $s_{0} \in \mathcal{S}$ if and only if $\zeta\left(1-s_{0}\right)=0$.

Conjecture (Riemann, 1859)

The non-trivial zeroes of ζ all lie on the critical line $\operatorname{Re}(s)=\frac{1}{2}$.

Bernoulli numbers and special values

Thanks to Euler we know that for all $n \in \mathbb{Z}_{\geq 1}$

$$
\zeta(2 n)=\frac{(-1)^{n+1} \cdot(2 \pi)^{2 n} \cdot B_{2 n}}{2 \cdot(2 n)!}
$$

where $B_{k} \in \mathbb{Q}$ denotes the k - th Bernoulli number.
These rational numbers are defined via the equality of formal power series in $\mathbb{Q}[[X]]$.

$$
\frac{X}{\exp (X)-1}=\sum_{k=0}^{+\infty} B_{k} \cdot \frac{X^{k}}{k!}
$$

This also means that, for $n \in \mathbb{Z}_{\geq 1}$

$$
\zeta(1-2 n)=-\frac{B_{2 n}}{2 n} \in \mathbb{Q}
$$

is a rational number!

Generalized Bernoulli numbers

If χ is a Dirichlet character modulo N, we define generalized Bernoulli numbers $B_{n, \chi} \in \mathbb{Q}[\chi]$ via a modified generating function

$$
\sum_{a=1}^{N} \frac{\chi(a) \cdot X \cdot \exp (a X)}{\exp (N X)-1}=\sum_{n=0}^{+\infty} B_{n, \chi} \frac{X^{n}}{n!}
$$

And one can prove that for $k \geq 1$

$$
L(\chi, 1-k)=-\frac{B_{k, \chi}}{k} \in \mathbb{Q}[\chi]
$$

is an algebraic number!

The p-adic topology on \mathbb{Q}

$\mathbb{R}=$ completion of \mathbb{Q} with respect to the Euclidean absolute value (Archimedean)

Are there other absolute values on \mathbb{Q} ? If p is a prime number and $x=r / s \in \mathbb{Q}$, we can set

$$
|x|_{p}=c^{v_{p}(r)-v_{p}(s)}
$$

where $c \in(0,1)$. This new absolute value satisfies a strong triangular inequality (we say it is non-Archimedean)

$$
|x+y|_{p} \leq \max \left\{|x|_{p},|y|_{p}\right\}
$$

$\mathbb{Z}_{p}, \mathbb{Q}_{p}$ and beyond \ldots

One can complete \mathbb{Q} with respect to $|\cdot|_{p}$, obtaining a field denoted by \mathbb{Q}_{p}, called field of p-adic numbers. An element $\alpha \in \mathbb{Q}_{p}$ can be written uniquely as

$$
\sum_{n=-M}^{+\infty} a_{n} \cdot p^{n}
$$

with $a_{n} \in\{0,1, \ldots, p-1\}$. Inside \mathbb{Q}_{p} we have the subring

$$
\mathbb{Z}_{p}=\left\{\left.\alpha \in \mathbb{Q}_{p}| | \alpha\right|_{p} \leq 1\right\} \supset \mathbb{Z}
$$

known as the ring of p-adic integers.
We can thus see Dirichlet characters taking values in an algebraic closure $\overline{\mathbb{Q}}_{p}$ of \mathbb{Q}_{p} (after fixing an embedding $\overline{\mathbb{Q}} \hookrightarrow \overline{\mathbb{Q}}_{p}$) and study them p-adically.

Towards p-adic Dirichlet L-functions

In particular it makes sense to ask whether there exist a (continuous/analytic) function

$$
L_{p, \chi}: \mathbb{Z}_{p} \rightarrow \overline{\mathbb{Q}}_{p}
$$

such that for $k \geq 1, k \in \mathbb{Z} \subset \mathbb{Z}_{p}$ it holds

$$
L_{p, \chi}(1-k)=L(\chi, 1-k) \cdot\{\text { explicit factor at } p\}
$$

The existence of such a function is suggested by the many congruences satisfied by Bernoulli numbers.

Kubota-Leopoldt p-adic L-function

Theorem (Kubota-Leopoldt, 1964)

Let χ be a (p-adic) Dirichlet character. Then there is a continuous function $L_{p, \chi}: \mathbb{Z}_{p} \backslash\{1\} \rightarrow \overline{\mathbb{Q}}_{p}$ such that for all $k \in \mathbb{Z}_{\geq 1}$ it holds

$$
\begin{aligned}
L_{p, \chi}(1-k) & =-\left(1-\chi \omega^{-k}(p) \cdot p^{k-1}\right) \cdot \frac{B_{k, \chi}}{k}= \\
& =\left(1-\chi \omega^{-k}(p) \cdot p^{k-1}\right) \cdot L\left(\chi \omega^{-k}, 1-k\right)
\end{aligned}
$$

where $\omega: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ denotes the Teichmüller character

$$
\omega(s)=\lim _{n \rightarrow+\infty} s^{p^{n}} \in \mu_{p-1} \cup\{0\} \subset \mathbb{Z}_{p}
$$

Moreover if χ is non-trivial, $L_{p, \chi}$ extends to a continuous function on \mathbb{Z}_{p}.

One construction of $L_{p, \chi}$

- Write $\chi=\psi \eta$ with ψ primitive of conductor p^{m} and η primitive of conductor N with $p+N$.
- Define a p-adic pseudomeasure $\mu_{p, \eta}$ on \mathbb{Z}_{p}^{\times}and let

$$
L_{p, \chi}(s)=\int_{\mathbb{Z}_{p}^{\times}} \psi \omega^{-1}(x) \cdot\langle x\rangle^{-s} \cdot \mathrm{~d} \mu_{p, \eta}
$$

- Show that

$$
L_{p, \chi}(1-k)=\left(1-\chi \omega^{-k}(p) \cdot p^{k-1}\right) \cdot L\left(\chi \omega^{-k}, 1-k\right)
$$

One construction of $L_{p, \chi}$

- Write $\chi=\psi \eta$ with ψ primitive of conductor p^{m} and η primitive of conductor N with $p+N$.
- Define a p-adic pseudomeasure $\mu_{p, \eta}$ on \mathbb{Z}_{p}^{\times}and let

$$
L_{p, \chi}(s)=\int_{\mathbb{Z}_{p}^{\times}} \psi \omega^{-1}(x) \cdot\langle x\rangle^{-s} \cdot \mathrm{~d} \mu_{p, \eta}
$$

- Show that

$$
L_{p, \chi}(1-k)=\left(1-\chi \omega^{-k}(p) \cdot p^{k-1}\right) \cdot L\left(\chi \omega^{-k}, 1-k\right)
$$

Remark

A measure on \mathbb{Z}_{p}^{\times}with values in \mathbb{Z}_{p} can be thought as an element of

$$
\operatorname{Hom}_{\mathbb{Z}_{p}}^{c t s}\left(\mathcal{C}\left(\mathbb{Z}_{p}^{\times}, \mathbb{Z}_{p}\right), \mathbb{Z}_{p}\right) \cong \mathbb{Z}_{p}\left[\left[\mathbb{Z}_{p}^{\times}\right]\right.
$$

L-functions attached to modular forms

Let $f \in S_{k}(N, \chi)$ be a normalized eigenform of level N, weight k and character χ. Then f has a q-expansion as

$$
f=\sum_{n=1}^{+\infty} a_{n} q^{n} \quad q=\exp (2 \pi i z), \operatorname{Im}(z)>0
$$

and the L-function associated to f is not surprisingly defined (at least for $\operatorname{Re}(s)>k / 2+1)$

$$
\begin{aligned}
L(f, s) & =\sum_{n=1}^{+\infty} \frac{a_{n}}{n^{s}}=\prod_{p} \frac{1}{1-a_{p} p^{-s}+\chi(p) p^{k-1-2 s}}= \\
& =\prod_{p \mid N} \frac{1}{1-a_{p} p^{-s}} \times \prod_{p+N} \frac{1}{\left(1-\alpha_{p}^{1} p^{-s}\right)\left(1-\alpha_{p}^{2} p^{-s}\right)}
\end{aligned}
$$

It extends to a holomorphic function on \mathbb{C} and satisfies a functional equation $s \leftrightarrow k-s$.

Triple product L-functions - classical case

Let f, g, h be normalized eigenforms of level N_{f}, N_{g}, N_{h}, character $\chi_{f}, \chi_{g}, \chi_{h}$, weight k, l, m respectively. Let $N:=\operatorname{lcm}\left(N_{f}, N_{g}, N_{h}\right)$. Write

$$
f=\sum_{n=1}^{+\infty} a_{n} q^{n} \quad g=\sum_{n=1}^{+\infty} b_{n} q^{n} \quad h=\sum_{n=1}^{+\infty} c_{n} q^{n}
$$

and set

$$
\begin{gathered}
L(f \times g \times h, s)_{p}:=\prod_{\eta \in\{1,2\}\{1,2,3\}} \frac{1}{\left(1-\alpha_{p}^{\eta(1)} \beta_{p}^{\eta(2)} \gamma_{p}^{\eta(3)} \cdot p^{-s}\right)} \quad \text { for } p+N \\
L(f \times g \times h, s):=\prod_{p+N} L(f \times g \times h, s)_{p}
\end{gathered}
$$

Garrett and Harris-Kudla proved that $L(f \times g \times h, s)$ admits analytic continuation to \mathbb{C} and functional equation $s \leftrightarrow k+I+m-2-s$.

Triple product p-adic L-functions

My PhD project is related to the construction of a p-adic L-function of three variables (k, l, m) that should interpolate (the algebraic part) of the special values

$$
L\left(\mathbf{f}_{k} \times \mathbf{g}_{l} \times \mathbf{h}_{m}, \frac{k+l+m-2}{2}\right)
$$

where $\mathbf{f}, \mathbf{g}, \mathbf{h}$ are suitable p-adic families of eigenforms specializing to classical eigenforms in classical weights.

Triple product p-adic L-functions

My PhD project is related to the construction of a p-adic L-function of three variables (k, l, m) that should interpolate (the algebraic part) of the special values

$$
L\left(\mathbf{f}_{k} \times \mathbf{g}_{l} \times \mathbf{h}_{m}, \frac{k+l+m-2}{2}\right)
$$

where $\mathbf{f}, \mathbf{g}, \mathbf{h}$ are suitable p-adic families of eigenforms specializing to classical eigenforms in classical weights.

This construction has been already achieved in many cases and with different approaches (some people involved: Andreatta, Bertolini, Darmon, Greenberg, Hsieh, lovita, Rotger, Seveso, Venerucci, ...) and we would like to generalise it to more general settings.

Thanks for the attention... and merry Chuistinas I!!

