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Classical L-functions

Classically, an L-function is a meromorphic function on C (often entire)
associated to a mathematical object X (usually coming from geometry,
representation theory, number theory . . . ).

The construction of a complex L-function usually goes mutatis mutandis
as follows:

(i) Write a series (a so-called Dirichlet series) of the form

L(s) = L(X , s) =
+∞

∑
n=1

an
ns

where the coefficients {an}n≥1 ⊂ C satisfy growth conditions that
ensure that L defines a holomorphic function on the right half-plane
{Re(s) > r} ⊂ C for some r ∈ R, r ≥ 1. The coefficients {an} encode
information about the object X .
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Classical L-functions

(ii) Find a gamma factor γ (i.e. a suitable meromorphic function on C,
often related to the usual gamma function Γ) such that the function
Λ(s) ∶= L(s) ⋅ γ(s) extends to a meromorphic function on C satisfying
a functional equation of the form

Λ(s) = cL ⋅ Λ(k − s)

for some k ≥ r and cL ∈ C, cL ≠ 0. Usually k ∈ Z.

(iii) Use the above functional equation to extend L to a meromorphic
function on C. which we will denote again by L = L(X , s).



Classical L-functions

(ii) Find a gamma factor γ (i.e. a suitable meromorphic function on C,
often related to the usual gamma function Γ) such that the function
Λ(s) ∶= L(s) ⋅ γ(s) extends to a meromorphic function on C satisfying
a functional equation of the form

Λ(s) = cL ⋅ Λ(k − s)

for some k ≥ r and cL ∈ C, cL ≠ 0. Usually k ∈ Z.
(iii) Use the above functional equation to extend L to a meromorphic

function on C. which we will denote again by L = L(X , s).



Why are L-functions interesting?

One common (and vague!) way to answer this question is that L-functions
contain a lot of arithmetic information about the object X .

A prototypical example of this phenomenon is the so-called analytic class
number formula (due to Dirichlet, Kummer, Dedekind, . . . ).

If K is a number field (i.e. a finite field extension of Q) one can attach to
K the so-called Dedekind zeta function ζK , prove the analytic continuation
and functional equation and finally show that

lim
s→1
(s − 1)ζK(s) =

2r1 ⋅ (2π)r2 ⋅RegK ⋅ hK

wK ⋅
√
∣∆K ∣

Many important open conjectures in number theory can be phrased in
terms of L-functions.
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Dirichlet characters

Let N ∈ Z, N ≥ 2. A Dirichlet character defined modulo N is a function
χ ∶ Z→ C such that
● χ(1) = 1, χ(N) = 0
● χ(n) = χ(m) if n ≡ m mod (N)
● χ(nm) = χ(n)χ(m) for all n,m ∈ Z

We say that χ is trivial if χ(Z) ⊆ {0,1}.

The constant function 1 ∶ Z→ C (1(n) = 1 for all n ∈ Z) is the unique (and
trivial!) Dirichlet character modulo 1.



Dirichlet L-functions

The Dirichlet L-series associated to χ is

L(χ, s) =
+∞

∑
n=1

χ(n)
ns

This series converges for Re(s) > 1. Actually L(χ, s) defines a holomorphic
function for Re(s) > 0 if χ is not trivial. In this case L(χ,1) ≠ 0.

If χ is trivial then (s − 1) ⋅ L(χ, s) can be continued to a holomorphic
function for Re(s) > 0 (not vanishing at s = 1).

These two different behaviours are the key ingredients that allowed
Dirichlet to prove his theorem about primes in arithmetic progressions in
1837.



Riemann ζ function
When χ = 1 then L(1, s) = ζ(s) is the Riemann zeta function.

Euler proved (in 1737) that it admits a product expansion as

ζ(s) =∏
p

1
1 − p−s for Re(s) > 1

In 1859 Riemann proved that:
(i) there is an entire function ξ such that when Re(s) > 1 it holds

ξ(s) = 1
2
⋅ s(s − 1) ⋅ π−s/2 ⋅ Γ( s

2
) ⋅ ζ(s)

(ii) the function ξ satisfies ξ(s) = ξ(1 − s) for all s ∈ C.

Hence ζ can be continued to a meromorphic function on C with a unique
simple pole at s = 1
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Riemann hypothesis

It is not too hard to prove that
(i) Γ(n + 1) = n! and Γ (n + 1

2) =
(2n)!
4n ⋅n!
√
π for n ∈ N

(ii) Γ has simple poles at s = −n for n ∈ N and is holomorphic elsewhere.

Since ζ(s) ≠ 0 when Re(s) > 1, we obtain that for Re(s) < 0 it can happen
ζ(s) = 0 if and only if s = −2n for n ∈ Z≥1. These are the so-called trivial
zeroes of ζ. The interesting zeroes of ζ lie in the strip S = {0 ≤ Re(s) ≤ 1}
and ζ(s0) = 0 for some s0 ∈ S if and only if ζ(1 − s0) = 0.

Conjecture (Riemann, 1859)
The non-trivial zeroes of ζ all lie on the critical line Re(s) = 1

2 .
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Bernoulli numbers and special values

Thanks to Euler we know that for all n ∈ Z≥1

ζ(2n) = (−1)n+1 ⋅ (2π)2n ⋅B2n
2 ⋅ (2n)!

where Bk ∈ Q denotes the k − th Bernoulli number.
These rational numbers are defined via the equality of formal power series
in Q[[X ]].

X
exp(X) − 1

=
+∞

∑
k=0

Bk ⋅
X k

k!

This also means that, for n ∈ Z≥1

ζ(1 − 2n) = −B2n
2n
∈ Q

is a rational number!



Generalized Bernoulli numbers

If χ is a Dirichlet character modulo N, we define generalized Bernoulli
numbers Bn,χ ∈ Q[χ] via a modified generating function

N
∑
a=1

χ(a) ⋅X ⋅ exp(aX)
exp(NX) − 1

=
+∞

∑
n=0

Bn,χ
Xn

n!

And one can prove that for k ≥ 1

L(χ,1 − k) = −
Bk,χ

k
∈ Q[χ]

is an algebraic number!



The p-adic topology on Q

R = completion of Q with respect to the Euclidean absolute value
(Archimedean)

Are there other absolute values on Q? If p is a prime number and
x = r/s ∈ Q, we can set

∣x ∣p = cvp(r)−vp(s)

where c ∈ (0,1). This new absolute value satisfies a strong triangular
inequality (we say it is non-Archimedean)

∣x + y ∣p ≤ max{∣x ∣p, ∣y ∣p}



Zp, Qp and beyond . . .

One can complete Q with respect to ∣ ⋅ ∣p, obtaining a field denoted by
Qp, called field of p-adic numbers. An element α ∈ Qp can be written
uniquely as

+∞

∑
n=−M

an ⋅ pn

with an ∈ {0,1, . . . ,p − 1}. Inside Qp we have the subring

Zp = {α ∈ Qp ∣ ∣α∣p ≤ 1} ⊃ Z

known as the ring of p-adic integers.

We can thus see Dirichlet characters taking values in an algebraic closure
Q̄p of Qp (after fixing an embedding Q̄↪ Q̄p) and study them p-adically.



Towards p-adic Dirichlet L-functions

In particular it makes sense to ask whether there exist a
(continuous/analytic) function

Lp,χ∶Zp → Q̄p

such that for k ≥ 1, k ∈ Z ⊂ Zp it holds

Lp,χ(1 − k) = L(χ,1 − k) ⋅ {explicit factor at p}

The existence of such a function is suggested by the many congruences
satisfied by Bernoulli numbers.



Kubota-Leopoldt p-adic L-function

Theorem (Kubota-Leopoldt, 1964)
Let χ be a (p-adic) Dirichlet character. Then there is a continuous
function Lp,χ ∶ Zp ∖ {1}→ Q̄p such that for all k ∈ Z≥1 it holds

Lp,χ(1 − k) = −(1 − χω−k(p) ⋅ pk−1) ⋅
Bk,χ

k
=

= (1 − χω−k(p) ⋅ pk−1) ⋅ L(χω−k ,1 − k)

where ω ∶ Zp → Zp denotes the Teichmüller character

ω(s) = lim
n→+∞

spn
∈ µp−1 ∪ {0} ⊂ Zp

Moreover if χ is non-trivial, Lp,χ extends to a continuous function on Zp.



One construction of Lp,χ

● Write χ = ψη with ψ primitive of conductor pm and η primitive of
conductor N with p ∤ N.
● Define a p-adic pseudomeasure µp,η on Z×p and let

Lp,χ(s) = ∫
Z×p
ψω−1(x) ⋅ ⟨x⟩−s ⋅ dµp,η

● Show that

Lp,χ(1 − k) = (1 − χω−k(p) ⋅ pk−1) ⋅ L(χω−k ,1 − k)

Remark
A measure on Z×p with values in Zp can be thought as an element of

Homcts
Zp (C(Z

×
p ,Zp),Zp) ≅ Zp[[Z×p]]
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L-functions attached to modular forms
Let f ∈ Sk(N, χ) be a normalized eigenform of level N, weight k and
character χ. Then f has a q-expansion as

f =
+∞

∑
n=1

anqn q = exp(2πiz), Im(z) > 0

and the L-function associated to f is not surprisingly defined (at least for
Re(s) > k/2 + 1)

L(f , s) =
+∞

∑
n=1

an
ns =∏

p

1
1 − app−s + χ(p)pk−1−2s =

=∏
p∣N

1
1 − app−s × ∏

p∤N

1
(1 − α1

pp−s)(1 − α2
pp−s)

It extends to a holomorphic function on C and satisfies a functional
equation s ↔ k − s.



Triple product L-functions - classical case

Let f ,g ,h be normalized eigenforms of level Nf ,Ng ,Nh, character
χf , χg , χh, weight k, l ,m respectively. Let N ∶= lcm(Nf ,Ng ,Nh). Write

f =
+∞

∑
n=1

anqn g =
+∞

∑
n=1

bnqn h =
+∞

∑
n=1

cnqn

and set

L(f × g × h, s)p ∶= ∏
η∈{1,2}{1,2,3}

1
(1 − αη(1)

p β
η(2)
p γ

η(3)
p ⋅ p−s)

for p ∤ N

L(f × g × h, s) ∶= ∏
p∤N

L(f × g × h, s)p

Garrett and Harris-Kudla proved that L(f × g × h, s) admits analytic
continuation to C and functional equation s ↔ k + l +m − 2 − s.



Triple product p-adic L-functions

My PhD project is related to the construction of a p-adic L-function of
three variables (k, l ,m) that should interpolate (the algebraic part) of the
special values

L(fk × gl × hm,
k+l+m−2

2 )

where f, g, h are suitable p-adic families of eigenforms specializing to
classical eigenforms in classical weights.

This construction has been already achieved in many cases and with
different approaches (some people involved: Andreatta, Bertolini, Darmon,
Greenberg, Hsieh, Iovita, Rotger, Seveso, Venerucci, . . . ) and we would
like to generalise it to more general settings.
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