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REPRESENTATIONS

MATTEO COSTANTINI AND FLORESTAN MARTIN-BAILLON

Abstract. We study Lyapunov exponents for flat bundles over hyperbolic curves de-
fined via parallel transport over the geodesic flow. We consider them as invariants on
the space of Hitchin representations and show that there is a gap between any two con-
secutive Lyapunov exponents. Moreover we characterize the uniformizing representation
of the Riemann surface as the one with the extremal gaps.

The strategy of the proof is to relate Lyapunov exponents in the case of Anosov
representations to other invariants, where the gap result is already available or where
we can directly show it. In particular, firstly we relate Lyapunov exponents to a foliated
Lyapunov exponent associated to a foliation Hölder isomorphic to the unstable foliation
on the unitary tangent bundle of a Riemann surface. Secondly, we relate them to
the renormalized intersection product in the setting of the thermodynamic formalism
developed by Bridgeman, Canary, Labourie and Sambarino.

Contents

1. Introduction 1
2. Transverse Lyapunov exponent 3
3. Thermodynamic formalism 7
4. Lyapunov exponents and Anosov and Hitchin representations 8
5. Relationships and proofs of main gap theorem 12
References 19

1. Introduction

Lyapunov exponents are characteristic numbers associated to the dynamics of trajec-
tories of a dynamical system. The interest for these invariants in this paper’s context
originated from the study of the dynamical properties of billiard trajectories on polygo-
nal billiards and trajectories of wind-tree models for the diffusion of gas molecules. Both
these settings can be studied by restating the problem in terms of properties of the ge-
odesic flow on a flat surface, i.e. a topological surface equipped with a flat metric with
finitely many conical singularities (see the survey [28]).

It turned out that, in order to study properties of a special flat surface, it is convenient
to study properties of the associated family given by the deforming the flat surface. The
Lyapunov exponents of the original problem for a special flat surface can be identified with
the ones associated to the flat cohomology bundle over the flat surface associated family.
It is at this point that the work of Eskin-Kontsevich-Zorich [12] allowed to compute the
sum of the positive Lyapunov exponents in this setting by relating it to the algebraic
degree of a holomorphic vector bundle.

Consequent works generalized the relation between Lyapunov exponents and degrees
of holomorphic bundles in the case of special flat bundles coming from families of curves
over ball quotients [20], family of K3 surfaces [13], and more generally in the case of
any flat bundle over a Riemann surface [11]. Daniel-Deroin [10] generalized even more
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this relation to the case of flat bundles over Kähler manifolds. The first author [9]
refined the relation of [11] and proposed to study the Lyapunov exponents as functions
on representation varieties and conjectured an inequality for the gap between Lyapunov
exponents for Hitchin representations.

Hitchin representations are the central objects of study in Higher Teichmüller Theory,
which generalizes the theory of Fuchsian and Kleinian groups to Lie groups of rank ≥ 2
(see Subsection 4.2). They were introduced by Hitchin [17] as representations in the
connected components of character varieties containing an embedding of the Teichmüller
space. Labourie [21] showed that Hitchin representations possess a rich dynamical struc-
ture and in particular they are faithful and discrete.

Generalizing the rank one case, various asymptotic quantities describing the geometry
of a representation have been studied: the orbital counting problem [25], critical exponent
and entropies [23], Hausdorff dimension of limit sets [24] [14]. A defining feature of
representations in higher rank is that the relevant notion of “size” of a matrix is not
just a number, the norm, but the collection of all the singular values, which form a
vector called the Cartan projection which lives in the Cartan subspace. The asymptotic
geometry of the Cartan projection of the image of the representation is a central subject
of investigations. In the present work we study the Lyapunov exponents of a Hitchin
representation with respect to a hyperbolic metric on a surface. These characteristic
numbers are quantities that measure the asymptotic growth of the norm of vectors under
parallel transport in the flat bundle associated to the representation, where the parallel
transport happens over the geodesic flow defined by the hyperbolic metric. The Lyapunov
exponents define a vector in the Cartan subspace which reflects asymptotic properties of
the representation with respect to the hyperbolic metric.

Let S be a compact surface of genus g ≥ 2 and X be a structure of Riemann surface on
S. Given a representation ρ : π1(S) → SL(d,R), we can define the Lyapunov exponents
λ1(X, ρ) ≥ · · · ≥ λd(X, ρ) of ρ with respect to X (see Subsection 4.1).

Computer experiments made by the first author hinted of a gap between the first and
the second Lyapunov exponents for Hitchin representations. In this work, we can show
the following more general statement.

Theorem 1.1. Let X be a structure of Riemann surface on a compact surface S of genus
g ≥ 2 and ρ : π1(X) → SL(d,R) be a Hitchin representation. Then it holds

λi(X, ρ) − λi+1(X, ρ) ≥ 1
for every i = 1, . . . , d − 1.

Moreover the bound is attained for every i = 1, . . . , d − 1 if and only if ρ is conju-
gated to the image of the Fuchsian representation uniformizing X under the irreducible
representation SL(2,R) → SL(d,R).

The previous result follows from a more general statement regarding a specific class
of Anosov representations, the (1,1,2)-hyperconvex Anosov representations. They are
Anosov representations whose action on their limit set exhibit a form of asymptotic
conformality (see Subsection 4.2).

Theorem 1.2. Let X be a structure of Riemann surface on a compact surface S of genus
g ≥ 2 and let ρ : π1(X) → SL(d,R) be a (1,1,2)-hyperconvex Anosov representation. Then
it holds

λ1(X, ρ) − λ2(X, ρ) ≥ 1.

We give two proofs of the previous result, both being a consequence of the relation we
show between Lyapunov exponents and other characteristic numbers (see Theorem 5.1).
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The first proof relies on the study of a deformation of the weak unstable foliation of the
geodesic flow on the unitary tangent bundle of X and it is a consequence of a more general
statement about the transverse Lyapunov exponent of this foliation (see Section 2). The
second proof is more concise but it uses the machinery of the thermodynamic formalism
for Anosov representations developed in [5] and [6] (see Section 3). It is however only
in this context where we can show that the equalities of Theorem 1.1 characterizes the
uniformizing representation.

These two approaches fit naturally in the perspective that Tholozan developed in his
note [26]. He explains that there is a correspondence between Anosov actions on the circle,
deformations of the weak unstable foliation of the geodesic flow, and reparametrizations of
the geodesic flow. Furthermore this correspondence preserves the (appropriately defined)
periods of each object. The two proofs we provide here consist of considering the Anosov
action on the circle given by an Anosov representation and interpreting it in one case as a
deformation of the weak unstable foliation and in the other case as a reparametrization of
the geodesic flow. It is however interesting to notice that the two proofs are not a simple
translation of each other. It is probable that there exists a third proof using directly the
Anosov action on the circle which would use a random walk discretizing the geodesic flow
and an adapation of Ledrappier formula [22] in this context.

Organization. In Section 2 we define the transverse Lyapunov exponent associated to a
foliation Hölder isomorphic to the unstable foliation on T 1X and prove the main bound
for this quantity.

In Section 3 we recall the setting of the thermodynamic formalism developed by Bridge-
man, Canary, Labourie and Sambarino in [5] and [6] (see also [8]), in particular the main
bound about the renormalized intersection.

In Section 4 we recall the main definitions of Lyapunov exponents via Oseledets The-
orem and the properties of Anosov and Hitchin representations. We also show some
implications that being Anosov has on the Lyapunov exponents.

In Section 5 we show the relation between Lyapunov exponents, the foliated Lyapunov
exponent and the theormodynamic formalism. We finally prove the main results Theo-
rem 1.1 and Theorem 1.2.

Acknowledgments. We would like to thank Bertrand Deroin, Jérémy Daniel and Nico-
las Tholozan for key insights and precious remarks. We would also like to thank the
University of Frankfurt and CIRM for their hospitality, since an important part of this
work has been developed there.

The first author has been supported by the DFG Research Training Group 2553.

2. Transverse Lyapunov exponent

In this section we provide a general setting to study a new invariant measuring the
growth of the holonomy of a reparametrization of the weak unstable foliation of the geo-
desic flow on a Riemann surface. We call this invariant the transverse Lyapunov exponent
and we will relate it to the usual Lyapunov exponents in the case where the reparametriza-
tion of the foliation is induced by a (1, 1, 2)-hyperconvex Anosov representation.

2.1. Setup and notation. Let S be a compact surface and X be a Riemann surface
structure on S. We denote by T 1X the unitary tangent bundle of X, by π : T 1X → X the
projection and by (Ψt) the geodesic flow on T 1X. We also consider the the weak unstable
foliation Fu of the geodesic flow on T 1X. We finally equip T 1X with the Liouville volume
form vL, normalized to be a probability measure.
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From now on we say that a function is Ck+Hölder if it has continuous derivatives up
through order k and such that the k-th partial derivatives are Hölder continuous for
some exponent β, where 0 < β ≤ 1.

Let now M be a C1+Hölder-manifold which is Hölder isomorphic to T 1X. Let us call
Ξ : T 1X

∼=→ M the isomorphism and assume that Ξ is C1 along the leaves of Fu. Denote
by FM

u the foliation on M induced by Ξ and assume that this foliation is C1+Hölder.
Denote also by ΨM

t = Ξ ◦ Ψt ◦ Ξ−1 the flow induced on M . Note that FM
u is by definition

the weak unstable foliation of ΨM
t , and this flow is Hölder and C1 along the leaves of FM

u .

Remark 2.1. This setting may seem arbitrary but it is exactly the setting we are in
when we deform the conformal class of the weak unstable foliation of Ψt on T 1X, c.f.
[26].

Let us finally define a volume form ν on M in the following way. Since the foliation is
transversly oriented, we can fix an arbitrary 1-form α on M which defines the foliation,
meaning that its kernel defines the tangent bundle of FM

u . The form α induces a metric
on the normal bundle of FM

u and we define a volume form by ν = α ∧ πM,∗ωP , where ωP

is the Poincaré metric on the surface X and πM : M → X the projection πM := π ◦ Ξ−1.
Up to normalizing α we can assume that ν induces a probability measure.

Remark 2.2. Note that that T 1X is equipped with the Liouville measure vL and M
with the volume form ν. The measures ν and Ξ∗vL are in general mutually singular, but
the disintegrations of ν and Ξ∗vL along the leaves of FM

u are both equal to the Poincaré
leafwise measure πM,∗ωP .

2.2. The definition of the transverse Lyapunov exponent. We will now define an
invariant of the flow ΨM

t and the foliation FM
u , which we call the transverse Lyapunov

exponent, which measures the asymptotic growth of the norm transverse to FM
u of vectors

under the flow.
In order to define these characteristic numbers, we would like to apply directly ergodic

theory machinery, but the subtlety here is that the measure ν is not preserved by the
flow. We hence use the Liouville measure as an accessory, and then show that we can
compute the foliated Lyapunov exponent for almost every point with respect to ν.

Given a path c : [0, t] → M contained in a leaf, we define |Dhol(c)|α as the norm of
the derivative of the holonomy of this path along the foliation FM

u . More precisely, the
derivative of the holonomy induces a linear map between the one-dimensional fibers of
the normal bundle NFM

u ,c(0) and NFM
u ,c(t), and we define |Dhol(c)|α as the norm of this

linear map for the metric on NFM
u

induced by α. Note that |Dhol(c)|α depends on our
choice of α.

The local expression of |Dhol(c)|α can be described in the following way. Suppose that
the image of c is contained in a chart V which trivializes the foliation, i.e. V ≃ U × I
where U is a disk in H2 and I is an interval. In this chart the measure ν can be written
as fα(z, x)ωP (dz)dx, so
(1) |Dhol(c)|α = fα(c(t))/fα(c(0)).

Let ΨM
[0,t](x) be the path s 7→ ΨM

s (x) defined on [0, t].

Theorem 2.3. There exists a number λT such that for every leaf L of FM
u and for πM,∗ωP

almost every x ∈ L we have

lim
t→+∞

1
t

log
∣∣∣Dhol

(
ΨM

[0,t](x)
)∣∣∣

α
= λT .

We call the number λT the transverse Lyapunov exponent.
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Remark 2.4. The transverse Lyapunov exponent λT is independent of the transverse
form α. Indeed, since M is compact, any two norms are uniformly bounded away from
each other.

Proof. For any x ∈ T 1X, we set Ht(x) = log|Dhol(ΨM
[0,t](Ξ(x)))|α. This is a cocycle over

the geodesic flow on T 1X. As the geodesic flow on T 1X is ergodic with respect to the
Liouville measure, there exists a number λT such that, for vL-almost every x ∈ T 1X, we
have

lim
t→+∞

1
t
Ht(x) = λT .

Let us denote by G the set of “good points”, that is those for which the above equality
holds. We know that it is a set of full vL measure, and it is invariant under the flow.
We are going to show that for every leaf L of Fu, the set G ∩ L is of full measure. This
implies the main statement, as Ξ maps leaves of Fu to leaves of FM

u and by Remark 2.2
it maps full measure subsets to full measure subsets.

First, it is clear that there exists one leaf L0 for which this is true. Then we are going
to show that G is a set foliated by the strong stable foliation Fss, that is the 1-dimensional
foliation such that a leaf through a point x is the set of y’s such that d(Ψt(x), Ψt(y)) goes
to 0 exponentially fast. This will imply the result. Indeed, starting from the leaf L0 such
that G ∩ L0 is of full measure, consider another leaf L of Fu. Consider the first return
map of the horocyclic flow L0 → L. Because the strong stable and unstable foliation are
transverse to each other, this is a smooth map and it is surjective. It sends the set of full
measure L0 ∩ G to a set of full measure which is included in L ∩ G.

Let’s finally show that the set G is foliated by the strong stable foliation. The holonomy
of the foliation FM

u is C1+Hölder. In particular, the derivative of the holonomy along a
geodesic of length 1 is uniformly β-Hölder, for some β > 0. Let us denote by ∥·∥Cβ the
β-Hölder norm

∥f∥Cβ := sup
x,y∈T 1X

|f(x) − f(y)|
d(x, y)β

where f : T 1X → R and d(·, ·) is a distance in T 1X (any two distances are equivalent
since T 1X is compact). Then, by compactness of M , there exists a constant C > 0 such
that

∥x 7→ H1(x)∥Cβ ≤ C.

Let x and y be in the same leaf of the strong stable foliation. We show now that x and
y belong to G. We denote zk = Ψk(z). We have then

∥Hn(x) − Hn(y)∥Cβ ≤
n−1∑
k=0

∥H1(xk) − H1(yk)∥Cβ ≤ C
n−1∑
k=0

d(xk, yk)β ≤ C
∞∑

k=0
d(xk, yk)β,

and the last sum is convergent because xk and yk become exponentially close. This implies
that limn→∞ Hn(x)/n = limn→∞ Hn(y)/n, which is what we wanted to show. □

The conclusion of the theorem implies that the limit defining λT exists for ν-almost
every x ∈ M , because Ξ∗vL and ν are absolutely continuous along the leaves.

The manifold M is a foliated fiber bundle πM : M → X, where πM = π ◦ Ξ−1. Hence,
the transverse Lyapunov exponent can be expressed using the fibered structure. The flow
ΨM

t induces a projective transformation between fibers ΨM
t,x : MπM (x) → MπM(ΨM

t (x)) for
each x ∈ M . For each ζ ∈ MπM (x), we denote by DζΨM

t,x the derivative of ΨM
t,x at the



GAP BETWEEN LYAPUNOV EXPONENTS 6

point ζ. Then we have

(2) λT = lim
t→+∞

1
t

log∥DζΨM
t,x∥

for almost every x in every leaf, where ζ is the point in MπM (x) corresponding to x and
for any choice of norm on the tangent bundle to the fibers. This follows from the the fact
that the holonomy along paths of the form ΨM

[0,t](x) is given by the maps ΨM
t,x between

fibers and the tangent bundle to the fibers are identified with the normal bundle of the
foliation.

2.3. Bound on the transverse Lyapunov exponent. We will now show the main
estimate for the transverse Lyapunov exponent.

Theorem 2.5. The transverse Lyapunov exponent satisfies λT ≤ −1.

The previous theorem is a consequence of the following lemma which explains how the
measure ν is transformed by the flow.

Lemma 2.6. The transformation of the measure ν under the flow on M is given by

(ΨM
−t)∗ν(dx) = et|DholΨM

[0,t](x)|ν(dx)

for any positive t.

Proof. First of all note that, since ΨM
t is not smooth, we cannot work directly with forms

and we can only argue with measures. Let now A be a set contained in a foliation chart
V ≃ U × I stable under ΨM

t and such that in this chart A ≃ U ′ × I ′. To prove the result
it is enough to compute (ΨM

−t)∗ν(A) for all such A’s, since such sets cover M .
On every plaque U ×{ζ}, the flow ΨM

t induces a flow ΨM,ζ
t and we have ΨM

t (U ′ × I ′) ={
(ΨM,ζ

t (z), ζ); (z, ζ) ∈ U ′ × I ′
}
. Recall that the measure ν in the chart V can be written

as fα(z, ζ)ωP (dz)dζ. Because Ψt is conjugated to the geodesic flow on T 1X by Ξ, and Ξ
is smooth and measure preserving along the leaves, we have

(ΨM,ζ
t )∗ωP = etωP .

We can finally compute

(ΨM
−t)∗ν(A) = ν(ΨM

t (A)) =
∫

ΨM
t (U ′×I′)

fα(z, ζ)ωP (dz)dζ

=
∫

I′

∫
ΨM,ζ

t (U ′)
fα(z, ζ)ωP (dz)dζ

=
∫

I′

∫
U ′

fα(ΨM,ζ
t (z), ζ)etωP (dz)dζ

=
∫

I′

∫
U ′

fα(ΨM,ζ
t (z), ζ)

fα(z, ζ) etfα(z, ζ)ωP (dz)dζ

=
∫

U ′×I′
et|DholΨM

[0,t](z, ζ)|fα(z, ζ)ωP (dz)dζ,

where the last equality follows from the local expression (1) of the norm of the holonomy.
This is exactly what we wanted to prove. □

We can prove now prove Theorem 2.5 about the main estimate for the transverse
Lyapunov exponent. The main idea is that the flow ΨM

t is expanding along the leaves of
FM

u while the total volume of ν remains constant.
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Proof of theorem 2.5. Using Lemma 2.6 we obtain

1 =
∫

M
ν =

∫
M

(ΨM
−t)∗ν =

∫
M

et|DholΨM
[0,t](x)|ν(dx).

Applying the logarithm function and using Jensen’s inequality we get∫
M

(t + log|DholΨM
[0,t](x)|)ν(dx) ≤ 0.

Finally we can divide by t and obtain

1 +
∫

M

1
t

log|DholΨM
[0,t](x)|ν(dx) ≤ 0.

Now, by theorem 2.3 the integrand converges to λT for ν-almost every x and it is bounded
uniformly in t, by continuity of the holonomy. By the dominated convergence theorem,
the integral converges then to λT and so we have the desired estimate

1 + λT ≤ 0.

□

3. Thermodynamic formalism

In this section, we recall the setting of the thermodynamic formalism developed by
Bridgeman, Canary, Labourie and Sambarino in [6] and [5] (see also [8]). In the next
section, we will relate it to Lyapunov exponents and use it to prove Theorem 1.1.

This thermodynamic formalism is a machinery which allows to encode quantities asso-
ciated to Anosov representations using reparametrisations of the geodesic flow.

We recall now the notions and results we will need for our purposes, and refer to [6]
for all the precise definitions and proofs.

Let as above X be a Riemann surface, T 1X be its unit tangent bundle and Ψt be the
geodesic flow on it (note that in [6] and [5], they work with the more general geodesic
flow of the group π1(X)). We denote by O the set of periodic orbits of Ψt and, for any
a ∈ O, we denote by p(a) the period of a.

Given a positive Hölder continuous function f on T 1X, there exists a reparametrisation
Ψf of the flow Ψ such that, for every periodic orbit a ∈ O, the period of a for the flow
Ψf is given by

pf (a) =
∫ p(a)

0
f(Ψs(x))ds,

where x is any point in a. The flow Ψf is only Hölder continuous but it is a Metric
Anosov flow (see [6, sec. 3.2]).

Denote by RT (f) the set {a ∈ O | pf (a) ≤ T}. The topological entropy of the flow Ψf

is given by

hf = lim
T →+∞

1
T

log #RT (f),

and it is finite and positive. The unique probability measure of maximal entropy µf for
Ψf is given by

µf = lim
T →+∞

1
#RT (f)

∑
a∈RT (f)

δf
a ,

where δf
a is the probality measure supported on a and invariant by the flow Ψf .
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Given two positive Hölder continuous functions f and g on T 1X, we define their inter-
section I(f, g) by

I(f, g) =
∫

T 1X

g

f
dµf ,

and their renormalized intersection J(f, g) by

J(f, g) = hg

hf

I(f, g).

The Hessian of the renormalized intersection was used in [6] to define a pressure form on
the set of pressure zero Hölder functions, generalizing the Weil-Peterson form.

We finally recall an important estimate of the renormalized intersection. Recall that f
and g are Livsic cohomologous when the flows Ψf and Ψg are Hölder conjugate. In that
case these two flows have the same periods.

Proposition 3.1. [6, Prop. 3.8])] The renormalized intersection satifisfies the lower
bound:

J(f, g) ≥ 1,

with equality if and only if hff and hgg are Livsic cohomologous.

4. Lyapunov exponents and Anosov and Hitchin representations

In this section we recall the definition of Lyapunov exponents associated to a represen-
tation of the fundamental group of a Riemann surface and investigate the special cases
of Anosov and, more specially, Hitchin representations.

4.1. Oseledets theorem and Lyapunov exponents. Let X be a compact Riemann
surface of genus greater than one and T 1X be its unit cotangent bundle equipped with the
Liouville probability measure. Let moreover ρ : π1(X) → SL(d,R) be a representation
and Eρ be the associated flat vector bundle over T 1X, i.e. the quotient of T 1X̃ × Rd by
the diagonal action of π1(X), acting on the second factor by ρ. The geodesic flow Ψt on
T 1X induces a flow Ψ̃t on Eρ by parallel transport. We finally equip Eρ with an arbitrary
measurable norm ∥·∥ (here measurable, and in particular defined up to measure zero sets,
is enough since, similarly to Remark 2.4, we can use the Poincaré recurrence Theorem to
work on a compact subset where the norm is defined).

We define now the Lyapunov exponents of ρ with respect to X by applying the theorem
of Oseledets (see e.g. [1]) to the linear flow Ψ̃t lying over the ergodic flow Ψt.

Theorem 4.1 (Oseledets). There exist real constants λ̃1 > · · · > λ̃r and a decomposition

Eρ =
r⊕

i=1
Ei

ρ

by measurable real vector bundles such that for a.e. x ∈ T 1X and all v ∈ (Ei
ρ)x \ {0}, it

holds
λ̃i = ± lim

t→+∞

1
t

log∥Ψ̃±tv∥.

Moreover, for all i ̸= j, we have

(3) lim
t→+∞

1
t

log d((Ei
ρ)Ψtx, (Ej

ρ)Ψtx) = 0,

where d is the Hausdorff distance on the compact subset of the projective space.
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The set of values λi = λi(X, ρ), for i = 1, . . . , d, obtained by considering the values λ̃i

repeated with multiplicity dim Ei
ρ, is called the set of Lyapunov exponents or Lyapunov

spectrum of (X, ρ). Note that the Lyapunov exponents are independent of the choice of
the norm function on Eρ.

Remark 4.2. Lyapunov exponents can be equivalently defined as

λi = lim
t→+∞

1
t

log σi(Ψ̃t),

where σi are the singular values (defined in Subsection 4.2). We will use this characteri-
zation when we will relate Lyapunov exponents to other quantities in Section 5.

We finally recall that we can associate two flags to the decomposition of Eρ, the forward
flag F 1

ρ ⊂ F 2
ρ ⊂ · · · ⊂ F r

ρ and the backward flag B1
ρ ⊂ B2

ρ ⊂ · · · ⊂ Br
ρ defined by

• F i
ρ = Er+1−i

ρ ⊕ · · · ⊕ Er
ρ,

• Bi
ρ = E1

ρ ⊕ · · · ⊕ Ei
ρ.

These measurable bundles satisfy the following properties. For almost any x ∈ T 1X it
holds:

• (Bi
ρ)x ∩ (F d+1−i

ρ )x = (Ei
ρ)x ,

• limt→+∞
1
t

log∥Ψ̃tv∥ = λ̃r+1−i if and only if v ∈ (F i
ρ)x \ (F i−1

ρ )x ,
• limt→+∞

1
t

log∥Ψ̃−tv∥ = −λ̃i if and only if v ∈ (Bi
ρ)x \ (Bi−1

ρ )x .
Note that all the measurable bundles Ei

ρ, Bi anf F i are equivariant with respect to the
action of Ψ̃t. We say that a point x ∈ T 1X is called regular is it is a point for which the
previous properties hold.

4.2. Anosov and Hitchin representations. We consider now special representations
ρ : π1(X) → SL(d,R). The notion of Anosov representations of fundamental groups of
hyperbolic manifolds has been introduced by Labourie in [21]. Since then, it has been
generalized to general hyperbolic groups and different equivalent definitions have been
found [16], [15], [18], [19], [4]. Here we state a definition adapted to what is needed in
the following.

Let |·| be word metric on π1(X) associated to the choice of an arbitrary symmetric
generating set. Fix a Euclidean norm ∥·∥ on SL(d,R). For a matrix g ∈ SL(d,R), denote
by σ1(g) ≥ · · · ≥ σd(g) its singular values, i.e. the eigenvalues of

√
g∗g defined using

this norm. Remark that ∥g∥ = σ1(g) and ∥∧kg∥ = σ1(g) + · · · + σk(g), where ∧kg is the
automorphism of the exterior power ∧kRd induced by g.

The following definition is from [4]. For any p = 1, . . . , d, we say that a representation
ρ : π1(X) → SL(d,R) is p-Anosov if there exist constants C, λ > 0 such that

σp+1(ρ(γ))
σp(ρ(γ)) ≤ Ce−λ|γ|,

for every γ in π1(X). This property is independent of the word metric chosen. Note that
by substituting γ−1 to γ in the previous expression, it is easy to show that a representation
is p-Anosov if and only if it is (d − p)-Anosov and that ∧pρ is 1-Anosov if and only if ρ
is p-Anosov.

Recall that the boundary ∂∞π1(X) of the group π1(X) is a topological circle with a
Hölder structure. We recall now one important property of p-Anosov representations .

Theorem 4.3 ([4, Prop. 4.9]). Let ρ : π1(X) → SL(d,R) be a p-Anosov representation.
There exist two ρ-equivariant Hölder continuous maps ξp : ∂∞π1(X) → Gp and ξd−p :
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∂∞π1(X) → Gd−p, where Gi is the Grassmanian of i-planes in Rd, satisfying
ξp(x) ⊕ ξd−p(y) = Rd,

for every x ̸= y in ∂∞π1(X).

The maps ξi are called the boundary maps of ρ.
We are now able to recall the definition of hyperconvex representations following [24].

These representations are the ones for which the bound of Theorem 1.2 holds.

Definition 4.4. Let ρ : π1(X) → SL(d,R) be both 1-Anosov and 2-Anosov. We say that
ρ is (1, 1, 2)-hyperconvex if for every pairwise distinct x, y, z in ∂∞π1(X) it holds

(ξ1(x) ⊕ ξ1(y)) ∩ ξd−2(z) = {0} ,

Remark that we always have ξ1(x) ⊂ ξ2(x) when ρ is 1-Anosov and 2-Anosov [16]. The
main property of (1, 1, 2)-hyperconvex that we will use in order to relate the Lyapunov
exponents given by Oseldets theorem to the transverse Lyapunov exponents and to the
thermodynamic formalism is the following.

Theorem 4.5 ([24, Prop. 7.4]). Let ρ : π1(X) → SL(d,R) be a (1, 1, 2)-hyperconvex
representation. Then the image ξ1(∂∞π1(X)) is a C1+Hölder manifold and its tangent
space at ξ1(x) can be described as

Tξ1(x)ξ1(∂∞π1(X)) = Tξ1(x)Pξ2(x).

Note that even if the image of ξ1 is C1+Hölder, the map ξ1 itself is only Hölder.
We recall now the definition and properties of Hitchin representations, which are a

special instance of Anosov representations. Consider the connected component of the
character variety of representations π1(X) → PSL(d,R) containing the Fuchsian repre-
sentations (via the irreducible embeding PSL(2,R) → PSL(d,R)). This component is
called Hitchin component and the representations parametrized by this component are
called Hitchin representations. They have been introduced by Hitchin in [17] and are
central in the study of higher Teichmüller theory (see e.g. [27]). A Hitchin representa-
tion π1(X) → PSL(d,R) can be lifted to a representation ρ : π1(X) → SL(d,R) and the
properties we are interested in are independent of the lift, so in the following we will only
work with representation with values in SL(d,R).

We recall now the main properties of Hitchin representation that we will use.

Theorem 4.6. Let ρ : π1(X) → SL(d,R) be a Hitchin representation. Then
• ρ is i-Anosov, for every i = 1, . . . , d − 1 (see [21]);
• ∧kρ : π1(X) → SL(∧kRd) is (1, 1, 2)-hyperconvex for any k = 1, . . . , d−1 (see [24,

sec. 9.2]).

4.3. Oseledets and Anosov representations. Assume now that ρ : π1(X) → SL(d,R)
is a p-Anosov representation. We explain some consequences that this property has on the
Lyapunov exponents given by the Theorem of Oseledets. First we explain the relationship
between the notion of dominated splitting and the Anosov property.

Consider a continous flow (φt) on a compact space B. Suppose that this flow lifts to
a flow (φ̃t) on a bundle E → B over B . A splitting E = U ⊕ S of E is said to be
dominated for (φ̃t) if there exists constants C, a > 0 such that:

∥φ̃tv∥
∥v∥

≤ C
∥φ̃tw∥
∥w∥

e−at,

for every v ∈ S and w ∈ U , see [3]. In this case we say that (φ̃t) admits a dominated
splitting of index dim U .
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When ρ is p-Anosov, we can construct such a splitting of the bundle Eρ. First we
construct a splitting of the bundle T 1X̃ × Rd: to a point x ∈ T 1X̃ we associated the
splitting

ξp(x−∞) ⊕ ξd−p(x+∞)
of the fiber Rd. By equivariance of ξp and ξd−p, this splitting descends to a splitting of
Eρ that we denote by U ⊕ S. Observe that this splitting is invariant under the lift Ψ̃t of
the geodesic flow on T 1X. According to [4, prop. 4.6, prop. 4.9], ρ being p-Anosov is
equivalent to this splitting being dominated for (Ψ̃t). In particular (Ψ̃t) is dominated of
index p.

We are now able to show how the property of the dominated splitting of Eρ implies
inequalities between Lyapunov exponents.

Proposition 4.7. Let ρ : π1(X) → SL(d,R) be p-Anosov. Then
λi > λi+1

for i = p, d − p. Equivalently
dim Ep

ρ = dim Ed−p
ρ = 1.

Proof. As explained above, the flow (Ψ̃t) admits a dominated splitting of index p be-
cause ρ is p-Anosov. By [3, th. A], this implies that σp+1

σp
(Ψ̃t) uniformly decreases to 0

exponentially fast.
Since by Remark 4.2 we have λp = lim 1

t
log σp(Ψ̃t), this implies that λp > λp+1. As

p-Anosov implies d − p-Anosov, we also have λd−p > λd−p+1. □

We finally relate the boundary maps ξi : ∂∞π1(X) → Gi associated to a i-Anosov
representation ρ given by Theorem 4.3 and the forward and backward flags F i

ρ and Bi
ρ

given by the theorem of Oseledets (see Subsection 4.1). Note that we can identify S1 and
∂∞π1(X) using the Fuchsian representation jX : π1(X) → SL(2,R) inducing the complex
structure X on a surface S. Let now x ∈ T 1X be a regular point, i.e., a point for which
the Oseledets decomposition and the Oseledets flags are defined, and let x+∞ ∈ S1 and
x−∞ ∈ S1 be the boundary points in the future and in the past of the geodesic defined
by x.

Proposition 4.8. Let ρ : π1(X) → SL(d,R) be p-Anosov. Then we have the relations
ξi(x+∞) = (F i

ρ)x and ξi(x−∞) = (Bi
ρ)x

for i = p, d − p and for any regular point x ∈ T 1X.

Proof. Consider the dominated splitting Eρ = U ⊕ S associated to the the representation
ρ and recall that Ux = ξp(x−∞) and Sx = ξd−p(x+∞).

In the proof of [3, Th. A] it is shown that, when Eρ = U ⊕ S is dominated for (Ψ̃t),
then for a generic x we have

Ux = (Bp
ρ)x and Sx = (F d−p

ρ )x,

where Bρ and Fρ are the backward and forward flags given by Oseledets theorem.
Combining these two facts we have that

ξp(x−∞) = (Bp
ρ)x and ξd−p(x+∞) = (F d−p

ρ )x

for any regular point x ∈ T 1X. Finally, since if ρ is p-Anosov it is also d − p-Anosov, we
also have

ξd−p(x−∞) = (Bd−p
ρ )x and ξp(x+∞) = (F p

ρ )x.
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□

5. Relationships and proofs of main gap theorem

In this section we prove the results about the gaps between Lyapunov exponents stated
in Theorem 1.1 and Theorem 1.2 in two independent ways. The main idea is to relate
the Lyapunov exponents given by Oseledets Theorem in the case of (1, 1, 2)-hyperconvex
representations to other invariants for which we can prove an inequality statement. The
first approach relates the Lyapunov exponents to the transverse Lyapunov exponent de-
fined in Section 2 and uses the inequality obtained in Theorem 2.5, while in the second
approach we relate them to the thermodynamic formalism described in Section 3 and we
use the inequality of Proposition 3.1.

Let X be a Riemann surface and ρ : π1(X) → SL(d,R) be a (1,1,2)-hyperconvex
Anosov representation. Let first λi(X, ρ) be the Lyapunov exponents given by Oseledets
Theorem as in Subsection 4.1. Let then λT (Mρ) be the transverse Lyapunov exponent, as
in Section 2, associated to the manifold Mρ defined below in Subsection 5.1. Let finally
J(1, fρ) be the renormalized intersection as defined in Section 3 of the constant function
1 and the function fρ asssociated to ρ as defined below in Subsection 5.2. The main
relations we want to show in this section are the following.

Theorem 5.1. Let ρ : π1(X) → SL(d,R) be a (1,1,2)-hyperconvex Anosov representation.
Then we have the relation

λ1(X, ρ) − λ2(X, ρ) = −λT (Mρ) = J(1, fρ).

Using the previous Theorem 5.1 we are now able to prove the gap statement of Theo-
rem 1.2

Proof of Theorem 1.2. If ρ : π1(X) → SL(d,R) is a (1,1,2)-hyperconvex Anosov repre-
sentation, the inequality λ1(X, ρ) − λ2(X, ρ) ≥ 1 follows from the relations expressed in
Theorem 5.1 together with either the bound of Theorem 2.5 for the transverse Lyapunov
exponent or the bound of Proposition 3.1 for the renormalized intersection. □

The proof of Theorem 1.1 is the content of Subsection 5.3.

5.1. Relationship with transverse Lyapunov exponent. As usual, let S be a com-
pact surface and X be a Riemann surface structure on S. We denote by jX : π1(X) →
SL(2,R) the Fuchsian representation defining the Riemann surface structure. The Fuch-
sian representation jX induces an identifications between the universal cover S̃ = X̃ and
the hyperbolic plane H2, and between the boundary ∂∞π1(X) of the fundamental group
of X and the boundary at infinity S1 of H2. We will consider the isomorphism

fu : T 1X
∼=−→ (H2 × S1)/π1(X)

where π1(X) acts diagonally by jX . The isomorphism is given by associating to (x̃, v) in
T 1X̃ the point (z̃, ζ) ∈ H2 × S1, where z̃ is given by the uniformization map and ζ is the
point in the boundary S1 reached by the geodesic defined by (x, v) when times goes to
negative infinity. With this identification, the horizontal foliation of this flat bundle is
identified with the weak unstable foliation of the geodesic flow.

Let now ρ : π1(X) → SL(2,R) be a (1, 1, 2)-hyperconvex representation. Then by
Theorem 4.5 we know that the image Sρ := ξ1(∂∞π1(X)) is a C1+Hölder-submanifold of
Pd−1(R). Using jX , we identify ∂∞π1(X) and S1 and so we obtain a map

ξX
1 : S1 −→ Sρ ⊂ Pd−1(R).
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We finally construct the C1+Hölder-manifold Mρ = (H2 × Sρ)/π1(X) where π1(X) acts
diagonally by jX × ρ.

The manifold Mρ is Hölder-homeomorphic to T 1X via the map Ξ induced by the
composition of fu and the map (z̃, ζ) 7→ (z̃, ξX

1 (ζ)). We will denote by πρ : Mρ → X the
projection. The image FMρ

u of the unstable foliation under Ξ is C1+Hölder and Ξ is C1

along the leaves of the foliation. We are then in the same setting as Subsection 2.1 and
we can define the transverse Lyapunov exponent associated to Mρ.

Now that we have constructed Mρ, we can now prove the relation stated in Theorem 5.1
between the Oseledets Lyapunov exponents associated to X and ρ and the transverse
Lyapunov exponent associated to Mρ.

Proposition 5.2. If ρ : π1(X) → SL(d,R) is a (1,1,2)-hyperconvex Anosov representa-
tion, then λT (Mρ) = λ2(X, ρ) − λ1(X, ρ).

Proof. We will use the notation of Section 2. We consider the definition of the transverse
Lyapunov exponent via the expression (2), i.e.

λT = lim
t→+∞

1
t

log∥DζΨMρ

t,x ∥

for almost any x ∈ Mρ in every leaf, where recall that ΨMρ

t,x is the projective linear
transformation induced by the flow ΨMρ

t on Mρ between the vertical fibers of πρ and ζ is
the projection of x to the vertical fiber. Fix a point x ∈ Mρ for which the previous limit
holds. The point x ∈ Mρ corresponds to the point x′ = Ξ−1(x) in T 1X.

Consider now the linear map Ψ̃t,x′ : (Eρ)x′ → (Eρ)Ψt(x′), where Eρ is the flat bundle
associated to ρ as defined in Subsection 4.1 and Ψ̃t is the lift of the geodesic flow to Eρ.

The important remark here is that ΨMρ

t,x is the projective linear transformation between
the fibers (Mρ)πρ(x) and (Mρ)πρ(ΨM

t (x)) induced by the restriction to Sρ of the projectivi-
cation of Ψ̃t,x′ , i.e.

PΨ̃t,x′ |Sρ
= ΨMρ

t,x .

Moreover, by definition, ζ is the point in (Mρ)πρ(x) corresponding to x. By construction
of Mρ, we have then

ζ = ξX
1 (x′

−∞),
where x′

−∞ ∈ S1 is the boundary point in the past of the geodesic defined by x′.
Recall finally that, since ρ is (1, 1, 2)-hyperconvex, by Proposition 4.7 and Proposi-

tion 4.8, we have
ξX

1 (x′
−∞) = (E1

ρ)x′ and ξX
2 (x′

−∞) = (B2
ρ)x′ = (E1

ρ)x′ ⊕ (E2
ρ)x′

and that moreover, by Theorem 4.5, we have
TξX

1 (s)Sρ = TξX
1 (s)PξX

2 (s).
Putting together the previous displayed expressions, we find

DζΨMρ

t,x = DξX
1 (x′

−∞)Ψ
Mρ

t,x = DP(E1
ρ)x′

(
PΨ̃t,x′ |Sρ

)
= DP(E1

ρ)x′

(
PΨ̃t,x′

)
|TP(E1

ρ)x′
P(B2

ρ)x′

We choose u ∈ (E1
ρ)x′ and v ∈ (E2

ρ)x′ two non-zero vectors. Since we can equip
Eρ = T 1X̃ × Rd/π1(X) with the measurable norm given by the constant norm on Rd

(which is well-defined only up to a measurable zero set of discontinuity), we can apply
the formula shown below in Lemma 5.3 and obtain

∥DζΨMρ

t,x ∥ = ∥Ψ̃t,x′u ∧ Ψ̃t,x′v∥
∥u ∧ v∥

(
∥Ψ̃t,x′u∥

∥u∥

)−2

.
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Remark that Ψ̃t,x′u is in (E1
ρ)Ψt(x′) and Ψ̃t,x′v is in (E2

ρ)Ψt(x′). Recall the estimate (3) on
the angle between (E1

ρ)Ψt(x′) and (E2
ρ)Ψt(x′) given by Oseledets theorem 4.1:

lim
t→+∞

1
t

log d((E1
ρ)Ψt(x′), (E2

ρ)Ψt(x′)) = 0.

The previous expression implies
log∥Ψ̃t,x′u ∧ Ψ̃t,x′v∥ = log(∥Ψ̃t,x′u∥∥Ψ̃t,x′v∥) + o(t),

since d(L1, L2) = ∥u ∧ v∥/∥u∥∥v∥ for any two lines L1,L2 and non-zero vectors u ∈ L1
and v ∈ L2. We can then compute

log∥DζΨMρ

t,x ∥ = log∥Ψ̃t,x′u∥ + log∥Ψ̃t,x′v∥ − 2 log∥Ψ̃t,x′u∥ + o(t)
= log∥Ψ̃t,x′v∥ − log∥Ψ̃t,x′u∥ + o(t).

Taking the limit for t → ∞ of the previous expression and using that
1
t

log∥Ψ̃t,x′u∥ → λ1(X, ρ) and 1
t

log∥Ψ̃t,x′v∥ → λ2(X, ρ)

since u ∈ (E1
ρ)x′ \ {0} and v ∈ (E2

ρ)x′ \ {0}, we have proved the desired relation. □

We finally give a self-contained proof of the formula used previously to compute the
norm of the derivative of a projective linear transformation.

Lemma 5.3. For a linear transformation g : Rd → Rd, the operator norm of the restric-
tion of the derivative of Pg to a line P(⟨u, v⟩) ∼= P1 at the point P(⟨u⟩) is

∥DP(⟨u⟩)Pg|P⟨u,v⟩∥ = ∥gu ∧ gv∥
∥u ∧ v∥

(
∥gu∥
∥u∥

)−2

where on the left hand side we consider the operator norm and on the right hand side the
euclidean norm on Rd.

Proof. For any point L ∈ PRd (identified with a line in Rd), the tangent space of PRd at
L is canonically identified with the space of linear maps Hom(L,Rd/L).

The derivative DLPg : TLPRd → TgLPRd of this map at the point L is canonically
identified with the map

Hom(L,Rd/L) → Hom(gL,Rd/gL)
φ 7→ g ◦ φ ◦ g−1.

A choice of Euclidian norm ∥·∥ on Rd induces norms on L,Rd/L and Hom(L,Rd/L), and
this defines a metric on TPRd.

A choice of vector u ∈ L defines an isometry
Hom(L,Rd/L) → L ∧ Rd

φ 7→ u

∥u∥
∧ φ(u),

where L ∧ Rd ⊂ ∧2Rd is equiped with the norm on ∧2Rd induced by the norm on Rd.
For φ ∈ TLPRd = Hom(L,Rd/L) and any u ∈ L \ {0} we have:

∥φ∥Hom(L,Rd/L) =
∥φ(u)∥Rd/L

∥u∥
= ∥u ∧ φ(u)∥∧2Rd

∥u∥2 ,

and

∥DLPg(φ)∥Hom(gL,Rd/gL) =
∥gφg−1(gu)∥Rd/gL

∥gu∥
= ∥gu ∧ gφ(u)∥∧2Rd

∥gu∥2 .
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Now, given two non-collinear vectors u, v ∈ Rd, the tangent space at L = P ⟨u⟩ of
P = P ⟨u, v⟩ is generated by φ : u 7→ v ∈ Hom(L,Rd/L). By the previous equalities we
have:

∥DLPg|P ∥ = ∥DLPg|P (φ)∥
∥φ∥

= ∥gu ∧ gv∥
∥u ∧ v∥

(
∥gu∥
∥u∥

)−2

.

□

5.2. Relationship with thermodynamic formalism. We show now the relation of
Oseledets Lyapunov exponents to the thermodynamic formalism introduced in Section 3.

For a matrix g ∈ SL(d,R), denote by λ1(g) ≥ . . . λd(g) the modulus of the eigenvalues
of g and define the weight φ(g) = log λ1(g)

λ2(g) .

Remark 5.4. Note that one can consider different weight functions, e.g. in [6, Cor. 1.5]
they consider the weight φ(g) = log λ1(g).

Now we recall how to associate a Hölder continuous function on T 1X to an Anosov rep-
resentation of π1(X). Recall that the periodic orbits of the geodesic flow are in bijection
with the conjugacy classes of elements of π1(X).

Theorem 5.5 ([24], Prop. B7). Let ρ : π1(X) → SL(d,R) be a (1, 2)-Anosov represen-
tation. Then there exists a positive Hölder continuous function fρ : T 1X → R associated
to ρ and the weight φ such that for all Ψt-periodic orbits a ∈ O and every γ ∈ π1(X)
associated to a we can write the period of a for the reparametrized flow Ψfρ as

pfρ(a) = φ(ρ(γ)).

Remark 5.6. Note that the constant function 1 on T 1X is the same as fjX
, i.e. the

function given by the Theorem 5.5 from the uniformizing representation jX of X.

Now consider a (1, 1, 2)-hyperconvex representation ρ : π1(X) → SL(d,R). Since it is
crucial for us to know the entropy of fρ, we recall the following fact.

Theorem 5.7 ([24], Cor. 9.1). Let ρ : π1(X) → SL(d,R) be a (1, 1, 2)-hyperconvex
representation. The entropy hfρ of the associated flow Ψfρ satisfies hfρ = 1.

We can now prove the relation stated in Theorem 5.1 between the Oseledets Lyapunov
exponents associated to X and ρ and the renormalized intersection J(1, fρ) (see the
definition in Section 3) of the constant function 1 : T 1X → {1} and fρ.

Proposition 5.8. If ρ : π1(X) → SL(d,R) is a (1,1,2)-hyperconvex Anosov representa-
tion, then

J(1, fρ) = λ1(X, ρ) − λ2(X, ρ).

Proof. Note that by definition the constant function 1 is the function associated to the
geodesic flow Ψt. It is classical that the entropy of the geodesic flow is one h1 = 1, and
that the measure of maximal entropy is the Liouville measure µ1 = vL.

Since by Theorem 5.7 we have h1 = hfρ = 1, the renormalized intersection is the same
as the intersection, i.e.

J(1, fρ) = I(1, fρ) =
∫

T 1X
fρdvL.

Applying Birkhoff erdogic theorem, we obtain that for vL-almost any x ∈ T 1X it holds∫
T 1X

fρdvL = lim
T →+∞

1
T

∫ T

0
fρ(Ψt(x))dt.
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For every T > 0, we approximate the geodesic segment Ψ[0,T ](x) by a closed geodesic
aT (x) ∈ O of length T + O(1) by closing it by a short geodesic arc and we have

lim
T →+∞

1
T

∫ T

0
fρ(Ψt(x))dx = lim

T →+∞

1
T

pfρ(aT (x)).

Moreover, if we denote by γT (x) ∈ π1(X) the element corresponding to aT (x), we can
rewrite the previous expression using the characterizing property of fρ given Theorem 5.5
as

lim
T →+∞

1
T

pfρ(aT (x)) = lim
T →+∞

1
T

φ(ρ(γT (x)))

= lim
T →+∞

1
T

(log λ1(ρ(γT (x))) − log λ2(ρ(γT (x)))) .

Summarizing, we have show that

J(1, fρ) = lim
T →+∞

1
T

(log λ1(ρ(γT (x))) − log λ2(ρ(γT (x))))

for almost any x ∈ T 1X.
Since (γT (x)) is a quasi-geodesic asymptotic to the geodesic ray Ψt(x) and ∧2ρ is 1-

Anosov if ρ is 2-Anosov, we can apply Lemma 5.9 and Lemma 5.10 below to ρ and ∧2ρ
and obtain

lim
T →+∞

( 1
T

log λ1(ρ(γT (x))) − 1
T

log λ2(ρ(γT (x)))
)

= lim
T →+∞

( 1
T

log σ1(ρ(γT (x))) − 1
T

log σ2(ρ(γT (x)))
)

= λ1(X, ρ) − λ2(X, ρ).

where in the last line we have used that λ1(X, ∧2ρ) = λ1(X, ρ) + λ2(X, ρ). □

We give here self-contained proofs of the two results, which are probably well known,
needed at the end of the previous proof to conclude. Recall that a sequence (γn) in π1(X)
is a quasi-geodesic if

A−1n − C ≤ |γ| ≤ An + C,

for some constants A > 0 and C ∈ R. By definition a quasi-geodesic (γn) is asymptotic
to a unique γ∞ in ∂∞π1(X), its limit point.

Lemma 5.9. Let ρ : π1(X) → SL(d,R) be a 1-Anosov representation and let (γn) be a
quasi-geodesic in π1(X). Then

lim
n→+∞

1
n

log λ1(ρ(γn)) = lim
n→+∞

1
n

log σ1(ρ(γn)).

Proof. First observe that the two limits exists, the first by a similar reasoning as in the
first part of the proof of Proposition 5.8 and the second by a subadditive argument. In
particular it is enough to prove the equality for a subsequence.

For a matrix g ∈ SL(n,R) with σ2(g) < σ1(g), let U1(g) be the eigenspace associated
to the greatest eigenvalue of gg∗ and Sd−1(g) the sum of the eigenspaces associated to the
d − 1 lowest eigenvalues of g∗g. Let δ(g) be half the projective distance between U1(g)
and Sd−1(g). According to [2, Lemma 14.14] if

σ2(g)
σ1(g) < δ(g)2

then δ(g)∥g∥ ≤ λ1(g).
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Now if ρ is 1-Anosov and (γn) is a quasi-geodesic, by definition there exist constants
C, a > 0 such that

σ2(ρ(γn))
σ1(ρ(γn)) ≤ Ce−an.

Denoting by ξ1 and ξd−1 the limit maps of ρ and by γ∞ the limit point in ∂∞π1(X)
associated to (γn), by [4, Lemma 4.7] we have

ξ1(γ∞) = lim
n→∞

U1(ρ(γn)),

and
ξd−1(γ∞) = lim

n→∞
Sd−1(ρ(γn)−1).

On the other hand, up to taking a subsequence, (γ−1
n ) converges to a point γ−1

∞ ̸= γ∞,
because π1(X) acts on its boundary as a uniform convergence group. By Theorem 4.3,
i.e. by the transversality of the limit maps, we have hence that ξ1(γ∞) /∈ ξd−1(γ−1

∞ ).
Moreover

ξd−1(γ−1
∞ ) = lim

n→∞
Sd−1(ρ(γn)).

In particular, there exists δ > 0 such that for n large enough, the distance between
U1(ρ(γn)) and Sd−1(ρ(γn)) is greater than 2δ. As

σ2(ρ(γn))
σ1(ρ(γn)) → 0,

for n large enough, by the general fact recalled above we have
δ∥ρ(γn)∥ ≤ λ1(ρ(γn)).

Since σ1 = ∥·∥, then λ1(ρ(γn)) ≤ ∥ρ(γn)∥ and so this implies that

lim
n→+∞

1
n

log λ1(ρ(γn)) = lim
n→+∞

1
n

log σ1(ρ(γn)).

□

The next lemma is classical.
Lemma 5.10. Let ρ : π1(X) → SL(d,R) be a 1-Anosov representation and let (γT ) in
π1(X) be the sequence constructed above associated to the geodesic ray ΨT (x) for a generic
x ∈ T 1X . Then

lim
T →+∞

1
T

log σ1(ρ(γT )) = λ1(X, ρ)

Proof. Pick a x ∈ T 1X generic both for the Birkhoff theorem and the Oseledets theorem.
Since the operator norm of Ψ̃t is by definition the same as its first singular value, by
Remark 4.2 we have

λ1(ρ) = lim
T →+∞

1
T

log∥Ψ̃t∥(Eρ)x ,

where recall that Ψ̃t is the lifted geodesic flow to the linear bundle Eρ associated to
ρ above T 1X and ∥Ψ̃t∥(Eρ)x is the operator norm of Ψ̃t between the fibers (Eρ)x and
(Eρ)Ψt(x).

The operators (Ψ̃t)(Eρ)x between (Eρ)x and (Eρ)Ψt(x) and the automorphism (Ψ̃t)γT
of

a fiber above the loop γT differ by a composition by a bounded operator because (γT ) is
constructed by closing by a short geodesic arc the path Ψ[0,T ](x), so we have:

λ1(ρ) = lim
T →+∞

1
T

log∥Ψ̃t∥(Eρ)x = lim
T →+∞

1
T

log∥Ψ̃t∥γT
.
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Since parallel transport in Eρ over γT is given by the image of the monodromy ρ(γT ), we
can finally conclude

λ1(ρ) = lim
T →+∞

1
T

log∥Ψ̃t∥γT
= lim

T →+∞

1
T

log∥ρ(γT )∥

which proves what we want since by definition ∥ρ(γT )∥ = σ1(ρ(γT )). □

5.3. Proof of Theorem 1.1. In this section we can finally explain how to deduce the
inequality statement of Theorem 1.1 from Theorem 1.2 and show the rigidity statement
for the extremal gaps situation using the thermodynamic formalism.

Let ρ : π1(X) → SL(d,R) be a Hitchin representation. Remark that we have the
following relationships between Lyapunov exponents:

λi+1(ρ, X) − λi(ρ, X) = λ2(∧iρ, X) − λ1(∧iρ, X),
for every i = 1, . . . , d − 1. Since by Theorem 4.6 we can apply Theorem 1.2 to every
wedge power ∧iρ of a Hitchin representation, for i = 1, . . . , d − 1, we get the inequality
part of Theorem 1.1.

We assume now that ρ is a Hitchin representation and that we are in the extremal gap
case, i.e. for every i = 1, . . . , d − 1:

λi(ρ, X) − λi+1(ρ, X) = 1.

We will show that ρ is conjugated to the image of the Fuchsian representation by the
irreducible representation SL(2,R) → SL(d,R).

Let i ∈ {1, . . . , d − 1} and let ρi := ∧iρ. Since by assumption and by Proposition 5.8
we have that

1 = λ1(ρi, X) − λ2(ρi, X) = J(1, fρi
),

the equality case of Proposition 3.1 implies that fρi
is Livsic cohomologous to 1. In par-

ticular this means that the flows Ψfρi
t and Ψt have the same periods, which by Remark 5.6

means that for every γ ∈ π1(X) it holds
λ1(jX(γ))
λ2(jX(γ)) = λ1(ρi(γ))

λ2(ρi(γ)) = λi(ρ(γ))
λi+1(ρ(γ)) ,

where jX : π1(X) → SL(2,R) is the Fuchsian uniformizing representation of X. Since the
product of the eigenvalues of any ρ(γ) ∈ SL(d,R) is one, this implies by an elementary
calculation that for every γ ∈ π1(X) we have

λ1(ρ(γ)) =
(

λ1(jX(γ))
λ2(jX(γ))

)(d−1)/2

,

and it is well-known that

λ1(jd
X(γ)) =

(
λ1(jX(γ))
λ2(jX(γ))

)(d−1)/2

,

where jd
X : π1(X) → SL(2,R) → SL(d,R) is the image of jX by the irreducible represen-

tation SL(2,R) → SL(d,R).
To conclude, we apply the “Hitchin rigidity” result of [7, Cor. 5.19]. This result states

that if two Hitchin representations ρ1 and ρ2 satisfy
λ1(ρ1(γ)) = λ1(ρ2(γ))

for every γ ∈ π1(X), then ρ1 is conjugated to ρ2. Applying this result to ρ and jd
X and

using the last two equalities, we get that ρ and jd
X are conjugated. This concludes the

proof of Theorem 1.1.
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for Lyapunov Exponents of Flat Bundles on Curves”. In: Geometry & Topology 22.4
(2018), pp. 2299–2338. doi: 10.2140/gt.2018.22.2299.

[12] Alex Eskin, Maxim Kontsevich, and Anton Zorich. “Sum of Lyapunov Exponents of
the Hodge Bundle with Respect to the Teichmüller Geodesic Flow”. In: Publications
mathématiques de l’IHÉS 120.1 (Nov. 1, 2014), pp. 207–333. doi: 10.1007/s10240-
013-0060-3.

[13] Simion Filip. “Families Of K3 Surfaces and Lyapunov Exponents”. In: Israel Journal
of Mathematics 226.1 (June 1, 2018), pp. 29–69. doi: 10.1007/s11856-018-1682-
4.

[14] Olivier Glorieux, Daniel Monclair, and Nicolas Tholozan. “Hausdorff Dimension of
Limit Sets for Projective Anosov Representations”. Feb. 5, 2019. arXiv: 1902.01844
[math]. url: http://arxiv.org/abs/1902.01844 (visited on 01/06/2020).
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