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Introduction
In the long story of transcendence proofs that started in the late twenti-
eth century with the transcendence of e and π, a certain class of complex
numbers has been isolated, which seems to be reasonably treatable for the
purposes of number theory and large enough to include almost all numbers
that one could possibly care about. These numbers, called periods, have a
strong connection with geometry, to the point that a deep theory has been
developed around them in the hope that geometric insights can shed some
light to otherwise unreachable arithmetic statements concerning these num-
bers.
One possibility to define periods is to consider integrals of algebraic differ-
ential forms over some algebraic integration domain. Ideally, one should be
able to exploit the geometry of certain varieties and basic manipulations of
integral to recover all algebraic relations between periods.
A slightly more refined way to define periods goes through Hodge theory.
Given a smooth variety X over a subfield k of C, there is a comparison
isomorphism between de Rham and singular cohomology of the form

comp : H∗
dR(X, k)⊗k C → H∗

sing(X,Q)⊗Q C,

which, if X is affine, is induced by the perfect pairing

H∗
dR(X, k)⊗Q Hsing

∗ (X,Q) → C, (ω, γ) 7→
∫
γ

ω.

Curiously enough, this isomorphism is only defined in a functorial way when
extending coefficients to C. This means that, fixing a k-basis and a Q-basis of
the de Rham and singular cohomology respectively, the matrix representing
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this isomorphism has entries which are genuine complex numbers, a priori
not algebraic. These numbers are also called periods. Despite the similarity
of these two definitions in the affine case, it is not at all clear why these two
notions of periods should coincide.
Continuing with this second definition, the next step is to upgrade this setting
to Hodge structures. A pure Hodge structure is a triple (HB, HdR, comp) of
a Q-vector space HB, a k-vector space HdR with an exhaustive filtration and
an isomorphism comp between the complexifications of these vector spaces
in such a way that the induced filtration on HB ⊗Q C satisfies a certain
decomposition property. Although this definition may seem rather arbitrary,
the cohomology groups of every smooth projective k-variety carry a canonical
pure Hodge structure, and by considering certain iterated extensions of these
Hodge structures one can extend this theory to all varieties over k. Hodge
structures have been intensively studied, and one could hope that results
about Hodge structures, which are purely geometric in nature, might lead to
arithmetic statements about periods.
There is a third and more sophisticated definition for periods, for which we
first need to talk about motives. A category of motives, whose existence
at the moment is purely conjectural, should be a category which enjoys the
following properties:

• it is abelian, otherwise we do not like it;

• it is a universal cohomology theory, in the sense that every cohomol-
ogy theory over the category of varieties over k which satisfies certain
properties should always factor through this category of motives. In
some sense, motives should capture the very essence of cohomology.

• it is Tannakian, which means that it is isomorphic to the category of
finite dimensional representations of some group scheme. In particular,
there should be a group scheme, usually called motivic fundamental
group, which acts on the motive of every variety.

• Given a cohomology theory from the category of k-varieties to, say,
abelian groups, the induced functor from the category of motives to the
one of abelian groups should be a fiber functor. Roughly speaking, this
means that taking one of the classical cohomologies instead of motivic
cohomology should be the same as forgetting the action of the motivic
fundamental group. Basically, instead of considering a representation
of a group scheme, we are only able to see the underlying abelian group.

Although a proper category of motives has not been constructed yet, there
are several candidates, one of which has been proposed by Nori and will be
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one of the main themes of the seminar. The category of Nori motives satisfies
many of the properties listed above, except that it has a less general univer-
sal property. To put it short, in order for a cohomology theory to factor
through Nori motives, it needs to be in some sense comparable to singular
cohomology. Needless to say, this property will be more than enough for our
purposes.
Once we have the gadget of Nori motives in our hands, singular and de Rham
cohomology will induce two fiber functors on the category of Nori motives.
Isomorphisms between two fiber functors give a torsor X = Spec A under the
action of the motivic fundamental group, and we will be able to revisit the
comparison isomorphism introduced above as a complex point of this torsor.
Thus, periods will appear naturally as the numbers obtained by evaluating
algebraic functions of X at this complex point. Once again, it is not so clear
why this definition should coincide with the ones given before.
And after all this, what have we gained? Well, we have a big algebra A and
an evaluation map A → C whose image is precisely the algebra of periods.
The coaction of the motivic fundamental group on this algebra should trans-
late into a better understanding of relations among periods. Moreover, this
map is conjectured to be injective, in which case all relations among periods
would be induced by purely formal operations on integrals. This statement
usually goes by the name of period conjecture and will be the content of the
last part of the seminar.
Although the period conjecture in its general form is out of reach at the mo-
ment, a version thereof has been established in the case of curves. For this,
we can restrict our attention to a smaller subcategory of Nori motives, the so
called 1-motives, which is generated by motives of curves. A similar theory
to the one of Nori motives can be developed for this smaller subcategory,
and one can state an analogous form of period conjecture. This version of
the conjecture has been proved by means of the analytic subgroup theorem,
which pertains solely to the realm of complex Lie groups. In the last part of
the seminar, we will therefore introduce 1-motives and deduce most of their
properties from the ones of Nori motives, then we will sketch the proof of
the analytic subgroup theorem and finally enjoy some concrete applications
of the period conjecture.
There is still one talk left in the seminar, in which I could annoy everybody
by talking about motivic multiple zeta values, or in which we could compare
the category of Nori motives to other categories of motives, so as to put it in
perspective. According to the number of speakers, we could otherwise cancel
this very last talk.
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Very briefly, the structure of the seminar is the following:

• Talks 0 - 2: introduction to some background material, like de Rham
cohomology and Hodge structures;

• Talks 3 - 5: abstract constructions for the diagram category, which are
essential to Nori motives;

• Talks 6 - 8: Nori motives and their properties;

• Talks 9 - 12: period conjecture for 1-motives.

The main reference we will follow is [2], but for the period conjecture we will
use [3]. In the next section the program of each talk is briefly discussed, then
some more details about the mathematics appearing in the talks are given
in the subsequent section.

List of the talks
Talk 0: Introduction. (10/04)
I will go through the pages above and try to make them sound appealing.

Talk 1: De Rham cohomology. (17/04)
Introduce algebraic and holomorphic de Rham cohomology, following chap-
ters 3 and 4 of [2]. Start with algebraic de Rham cohomology, see [2, Section
3.1], skipping Subsection 3.1.5. Of [2, Subsection 3.1.6] we only need to recall
that the de Rham cohomology groups are finite dimensional vector spaces.
We also need to have an idea of de Rham cohomology for singular varieties,
so cover one among Section 3.2, Subsection 3.3.1 and Subsection 3.3.2.
Then turn to holomorphic de Rham cohomology, see [2, Subsection 4.1.1].
Explain Proposition 4.1.7 without proof, then give an idea of the general case
for complex analytic spaces as in [2, Section 4.2].

Talk 2: Mixed Hodge structures. (24/04)
Introduce the category of (k,Q)-vector spaces as in [2, Section 5.1] and ex-
plain the comparison isomorphism as in [2, Section 5.3], also quickly men-
tioning the case of singular varieties in [2, Section 5.4].
Then give an introduction to pure and mixed Hodge structures, following [1,
Section 2.6]. It is important that we get some familiarity with the topic and
that the main results are mentioned, but we will not rely on them later.
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Talk 3: Nori’s diagram category. (8/05)
Give the definitions of diagrams and representations as in [2, Subsection
7.1.1], then construct the diagram category as in [2, Subsection 7.1.2]. If time
allows, you could mention the universal property of the diagram category
explained in [2, Subsection 7.1.3], but in any case it will be the main topic
of the following talk.
In order for us to get familiar with the diagram category, cover the material
in [2, Section 7.2]. The main results are Proposition 7.2.3 and 7.2.5, which
explain some basic properties of the diagram category. The last lemmas
in this sections will be often used in the rest of the seminar, but are very
elementary and not so deep.
Finally, describe the diagram category as a category of comodules over a
coalgebra, following [2, Section 7.5].

Talk 4: Universal property of the diagram category. (15/05)
The goal of this talk is to prove the universal property of the diagram cate-
gory, which is covered in [2, Sections 7.3 and 7.4]. The first step is to prove
Theorem 7.1.20 as in Section 7.3, then the universal property follows rather
formally in Section 7.4.
Subsection 7.3.1 is rather technical and will not be needed elsewhere, so feel
free to state the main results without spending too much time on the proofs.
Subsection 7.3.2 is the very heart of the proof, and the main ingredient is
Lemma 7.3.16.

Talk 5: Nori’s rigidity criterion. (22/05)
The aim is now to give a criterion to establish whether a given diagram cat-
egory is rigid, so equivalent to the category of representations of some group
scheme.
First we need to understand how to define a tensor structure on the diagram
category, which can be induced from a product structure on the diagram
itself. Go through the definitions of product of diagrams, commutative prod-
uct structure and graded commutative representation as in [2, Section 8.1]
and discuss the tensor product on the diagram category in Proposition 8.1.5.
Next, we realize the diagram category as a category of representations of a
monoid scheme, which requires Proposition 8.1.15 and the subsequent corol-
lary. Finally, we can turn to Nori’s rigidity criterion, which is discussed in
[2, Section 8.3]. Introduce the notions of strong duals and perfect duality at
the beginning of this section and prove Proposition 8.3.4.
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Talk 6: Nori motives. (29/05)
Before introducing Nori motives, discuss localization of diagrams as in [2,
Section 8.2], which is the diagram version of the localization of a tensor cate-
gory with respect to one object. The properties that we need are summarized
in Proposition 8.2.5.
Then pass to [2, Section 9.1] and explain the definition of Nori motives. Also
introduce the main results that will be proved in the next talk, namely The-
orem 9.1.5 about rigidity and Theorem 9.1.10 for the universal property. It
would be nice to have a look at Example 9.1.11, 9.1.12 and 9.1.13, if time
allows.
We also start preparing the proof of the theorems of the next talk. Discuss
the content of [2, Subsection 9.2.1], and when it appears necessary state the
Basic Lemma (Theorem 2.5.2). For the proof of the Basic Lemma, the fastest
one is in Section 2.5.2, but also other proofs are presented right after.

Talk 7: Rigidity of Nori motives. (5/06)
The goal of this talk is to prove Theorem 9.1.5 and with it rigidity of Nori
motives. This is the only talk in which some basic intersection theory ap-
pears.
Give an overview of [2, Subsection 9.2.1], whose results are only needed in
the proof of Proposition 9.2.18. The next fundamental step is Theorem 9.2.4,
which allows us to replace the diagram of pairs with the one of good pairs.
The proof should follow rather flawlessly after Proposition 9.2.18.
Finally, we aim at Theorem 9.3.10, which is equivalent to Theorem 9.1.5.
In order to prove rigidity, we need to check the assumptions of Nori’s rigid-
ity criterion. First explain the tensor structure on Nori motives, which is
straightforward after Theorem 9.2.4. For the remaining assumptions we need
Lemma 9.3.8 and 9.3.9, which require some intersection theory.

Talk 8: Equivalence of the definitions of periods. (12/06)
In this talk we go through possible definitions of periods and prove their
equivalence using the machinery of Nori motives.
First introduce NC-periods as in [2, Section 11.1], which are integrals of
algebraic differential forms over some algebraic integration domain. Then
explain the definition of cohomological periods as in [2, Subsection 11.3.1],
which are the coefficients of the comparison isomorphism of any variety with
respect to rational bases. The next goal is to prove that these definitions are
equivalent, which is the content of Theorem 11.4.2.
An ad-hoc proof is given in [2, Section 11.4], but we can embed this result
in a deeper theory. Thus, go back to [2, Section 8.4], in which we pick
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up again the theory of diagram categories with the aim of comparing two
isomorphic representations of the same diagram. Under certain assumptions,
the isomorphisms between two representations make up a torsor under the
action of the group scheme which comes with a rigid diagram category. This
is explained in Proposition 8.4.10, while [2, Subsection 8.4.3] gives an explicit
description of this torsor.
Finally, we apply this machinery to Nori motives with the representations
induced by singular and de Rham cohomology. Go through [2, Section 13.1]
and prove the equivalence of the definition of periods via Corollary 13.1.10. If
time permits, you could also state the period conjecture as in [2, Subsection
13.2.1].

Talk 9: 1-Motives. (19/06)
In this talk we start to have a look at the period conjecture for curves and
introduce 1-motives. The goal is to explain the definition of 1-motives and
their basic properties, which is the content of [3, Chapter 8]. The definition
requires some notions from [3, Chapter 4], which can be treated only to a
minimal extent in order to understand the definition of 1-motives. For this
talk, some familiarity with algebraic groups might be useful.
The key link between 1-motives and Nori motives is explained in [3, Appendix
A], in particular Theorem A.7. All the properties of Nori motives quoted here
follow immediately from the results of the previous talks. I will try to cut
down as much as possible on 1-motives and see to what extent we can deduce
properties of 1-motives from the ones that we already know of Nori motives.

Talk 10: The analytic subgroup theorem. (26/06)
The main tool in the proof of the period conjecture for curves is the analytic
subgroup theorem, which is Theorem 6.2 in [3, Chapter 6]. Go through the
necessary prerequisites in [3, Chapter 5] regarding Lie algebras, Lie groups
and the exponential map. Some preliminary familiarity with Lie groups and
Lie algebras might help you in dealing much faster with the topic.
Next, explain the singular and de Rham realizations of 1-motives as in [3,
Section 8.1]. The singualr realization is rather straightforward, while for
the de Rham one you have to lift universal vector extensions to the motivic
setting. After this present theorem 6.1, the so-called analytic subgroup
theorem, and the proof of Theorem 6.2.

Talk 11: The period conjecture for 1-motives. (3/07)
In this talk we state and prove the period conjecture for curves. Explain
periods of 1-motives as in [3, Chapter 9], especially section 9.1 and 9.2.
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This should actually be oa special case of the more general definitions of
periods that we have already given. The main result that we need is Theorem
9.10, which translates the analytic subgroup theorem into the language of 1-
motives. For this, first go through Proposition 8.21, which is the last missing
piece, then present the proof of Thorem 9.10.
Finally, go to [3, Chapter 13] and prove Theorem 13.3. Notice that thanks
to the machinery of Nori motives this result becomes an immediate corollary
of Theorem 9.10.

Talk 12: t.b.a. (10/07)

Proposal session for the next term. (17/07)

Some more details about each talk
In this section, we let R be a noetherian commutative ring and denote by
R− Mod the category of finitely generated R-modules.

Talk 1: Algebraic and holomorphic de Rham cohomology.
The goal of this talk is to recall the main aspects of de Rham cohomology,
with the idea of covering chapters 3 and 4 of [2]. The amount of material is
very large, but these concepts should be more or less familiar to everybody.
We can skip almost all details and proofs and focus on the broad picture
instead.
More in detail, we start with algebraic de Rham cohomology for smooth vari-
eties, see [2, Section 3.1]. We should refresh our memory about the definition
of the complex of differential forms, of de Rham cohomology, functoriality,
Künneth formula and so on. We will not need the comparison with the étale
topology, which is in [2, Subsection 3.1.5], while of [2, Subsection 3.1.6] we
only need to recall that the de Rham cohomology groups are finite dimen-
sional vector spaces.
Next, we need to extend de Rham cohomology to possibly singular varieties
and the book [2] proposes several equivalent definitions. I guess that the
fastest option is to follow [2, Subsection 3.2] and introduce the h-topology.
We have been working with the étale topology during the previous semester
and there are no new entries to the group of PhD students, so I suppose
nobody is afraid of Grothendieck topologies. Otherwise feel free to explore
[2, Subsection 3.3] to find out your favorite definition of algebraic de Rham
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cohomology for singular varieties.
Let us now turn to holomorphic de Rham cohomology. Of [2, Subsection
4.1.1] the Poincaré Lemma explained in Proposition 4.1.3 has a great rele-
vance for us, since it will be a piece of the comparison isomorphism. Then
[2, Subsection 4.1.2] is not needed, and of [2, Subsection 4.1.3] we only need
Proposition 4.1.7, which can be taken as a black-box.
Finally, we need to mention that these constructions carry through to singu-
lar complex analytic spaces, and for this we need [2, Subsection 4.2.1]. All
properties that we need are summarized in Lemma 4.2.6 and Proposition
4.2.10, which are the analogs of the smooth counterpart.
Also [1] deals with these topics in detail, see Section 2.2, so you could have a
look at these notes as well. The main problem is that they do not treat the
case of singular varieties, which is necessary for the rest of the seminar.

Talk 2: Mixed Hodge structures.
The goal of this talk is to compare singular and de Rham cohomology and
endow them with a refined algebraic structure. We start by introducing the
category of (k,Q)-vector spaces as in [2, Section 5.1] and the comparison iso-
morphism as in [2, Section 5.3]. The latter should be rather straightforward
to introduce, since it is merely a matter of putting together the results of the
previous talks.
The idea is the following. Given a smooth variety X over a field k, there is
a comparison isomorphism

comp : H∗
dR(X, k)⊗k C → H∗

sing(X,Q)⊗Q C,

which, if X is affine, is induced by the perfect pairing

H∗
dR(X, k)⊗Q Hsing

∗ (X,Q) → C, (ω, γ) 7→
∫
γ

ω.

This is the beginning of the story of periods: this isomorphism does not
respect rational structures, so the coefficients of its matrix with respect to
any choice of rational bases are not algebraic in general.
Since we are not content with smooth varieties only, we need to deal with
the singular varieties as well. This is the content of [2, Section 5.4], which
basically tells us that everything works as expected.
Next, we introduce Hodge structures. A detailed account on the subject is
given in [1], which starts defining pure Hodge structures in Subsection 2.6.1.
Classically, a pure Hodge structure of weight n on a complex vector space H
consists of a decomposition

H =
⊕

p+q=n

Hp,q
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of H into subspaces Hp,q which satisfy Hp,q = Hq,p. One then shows that the
n-t de Rham cohomology group of a smooth projective variety over C carries
a pure Hodge structure of weight n.
However, since we all love number theory, we had better remember that de
Rham cohomology is actually a k-vector space whenever our variety is defined
over a number field k. Besides, we are interested in studying periods, so we
cannot forget that, after tensoring with C, our beloved de Rham cohomology
turns into singular cohomology via an isomorphism which is not rational. In
this setting, even birational geometers will agree that it is a pity to define
Hodge structures starting with complex vector spaces, which is the reason
why [1] considers a slightly more refined version of Hodge structures.
A pure Hodge structure of weight n for the rest of the seminar will be a triple
(HB, HdR, comp) consisting of

• a finite dimensional Q-vector space HB;

• a finite dimensional k-vector space HdR together with an exhaustive
decreasing filtration F ∗HdR;

• a C-linear isomorphism comp : HdR ⊗k C → HB ⊗Q C;

such that the induced filtration on HC = HB ⊗Q C satisfies

HC = F pHC ⊗Hn+1−p
C .

This condition on the filtration is equivalent to the more classical decompo-
sition written above, but is probably more practical for our purposes.
We next turn to mixed Hodge structures, which can be thought of as iter-
ated extensions of pure Hodge structures, see [1, Subsection 2.6.2]. The idea
would be to give a broad overview of these concepts and state some results,
for example the fact that cohomology groups of smooth varieties carry a
mixed Hodge structure and that the category of mixed Hodge structures is
abelian. We will not need these results explicitly, so feel free to go through
these topics as you prefer.

Talk 3: Nori’s diagram category.
It is time to introduce the main concept that will play a fundamental role
in the definition of Nori motives: the diagram category. First, we need
to introduce the notion of diagrams and representations, which are covered
in [2, Subsection 7.1.1]. Roughly speaking, a diagram with identities is a
directed graph D with one distinguished loop for every edge or, equivalently, a
category in which composition of morphisms is not defined. A representation
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of a diagram D into R − Mod is a functor T : D → R − Mod on which we
do not require any constraint about composition of morphisms. Given a
representation T of D, one defines the ring of endomorphisms of T , denoted
by End(T ).
At this point [2, Subsection 7.1.2] explains the definition of Nori’s diagram
category. Take a diagram D and a representation T : D → R − Mod. If D
is finite, we define the diagram category of T as

C(D,T ) := End(T )− Mod.

Nothing weird so far, just notice that the ring End(T ) is not commutative in
general, so we consider left modules over this ring. If on the other hand the
diagram D is not finite, we set

C(D,T ) := 2− colimF (End(T |F )− Mod) ,

the 2-colimit ranging over all finite subdiagrams of D. You don’t like this
2-colimit? Me neither, but luckily [2, Section 7.2] takes some time to explain
in detail how it works.
Let us then turn to [2, Section 7.2]. The first two lemmas, 7.2.1 and 7.2.2,
are just some commutative algebra and show that the ring End(T ) is not too
bad when D is finite. Proposition 7.2.3 tells us that for finite diagrams the
representation T factors through the diagram category as follows:

C(D,T )

D R− Mod

fTT̃

T

Although this proposition is rather elementary, it is of great relevance for us:
the functor fT will be the analogue of a fiber functor in the Tannakian case.
The analogy with Tannakian formalism starts to appear: we have an abelian
category C(D,T ) together with a functor C(D,T ) → R−Mod... we still miss
the tensor structure, rigidity and so on, but don’t worry, we will slowly put
all pieces at the correct place.
Finally, Corollary 7.2.4 and Proposition 7.2.5 explain the aforementioned 2-
colim. At this point, we should have gained enough familiarity with diagram
categories to be able to believe the final lemmas of [2, Section 7.2]. These
deal with functoriality in D and base change with flat R-algebras. They are
not particularly deep and very elementary, so they are probably the most
reasonable topic to skip in case of lack of time.
Last but not least, we give one final description of the diagram category. We
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go back to [2, Section 7.1.2] and have a look at theorem 7.1.12. Under certain
assumptions, the R-linear dual of End(T |F ) is a coalgebra and we can define
the coalgebra

A(D,T ) := colimF End(T |F )∨.

Theorem 7.1.12 tells us that C(D,T ) is equivalent to the category of comod-
ules over A(D,T ). This is great news: instead of a big colimit of categories
of modules over some rings, the diagram category is nothing but comodules
over some big coalgebra!
The proof of this statement is to be found in [2, Section 7.5]. The main ingre-
dient is Lemma 7.5.4, which is purely a statement of commutative algebra;
it is obtained by duality, with the only caveat that we need to work with
finitely generated projective R-modules in order for the dual to commute
with tensor product. Then Corollary 7.5.7, which proves Theorem 7.1.12,
follows essentially by a formal categorical argument.

Talk 4: Universal property of the diagram category.
The goal of this talk is to prove the universal property of the diagram cate-
gory, which is Theorem 7.1.13 in [2, Subsection 7.1.3]. This property is kind
of tedious to write down, so let us say that, given a diagram D and a repre-
sentation T : D → R − Mod, the diagram category C(D,T ) is the universal
R-linear abelian category A for which the representation T factors as

A

D R− Mod

fF

T

with the correct adjectives for the functors F and f .
The universal property of the diagram category is a non-trivial result and
we divide the proof into two parts. First, we prove Theorem 7.1.20, whose
proof is the content of [2, Section 7.3]; after this, we prove Theorem 7.1.13
following [2, Section 7.4].
Let us have a look at Theorem 7.1.20. As a choice for a diagram D we could
consider an abelian category A in which we forget composition of functors.
We then take a representation T : A → R − Mod (just keep in mind that
composition of morphisms need not be preserved) and construct the diagram
category C(A, T ), which is also abelian. What is the relation between A and
C(A, T )? Under some mild assumptions on T , Theorem 7.1.20 tells us that
these two categories are equivalent.
Before constructing the equivalence, we need to go through some general
categorical nonsense in [2, Subsection 7.3.1]. Given an object p of A which is
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a right E-module for some R-algebra E, in the sense that there is a morphism
Eop → EndA(p), we can view the functor HomA(p,−) : A → R − Mod as a
functor

HomA(p,−) : A → E − Mod.

Proposition 7.3.5 constructs a left adjoint to this functor, denoted by

p⊗E − : E − Mod → A.

Lemma 7.3.8 and Proposition 7.3.9 show that this right adjoint behaves ex-
actly as a usual tensor product, in a suitable sense. The last proposition of
this section repeates the same construction starting with the contravariant
functor HomA(−, p). In order for you to understand how much time should
be dedicated to these exciting constructions, I will just say that they will
never be used again in the other talks...
It is then time to have a look at the very heart of the proof of Theorem
7.1.20, namely [2, Subsection 7.3.2]. The main ingredient is Lemma 7.3.16,
in which the most difficult task is the construction of the object denoted by
X(p) in the proof. Once we have seen this, the equivalence is proved soon
after Proposition 7.3.18. Let us briefly explain the idea.
Recall that

C(A, T ) := 2− colimF (End(T |F )− Mod) ,

the 2-colimit ranging over all finite subdiagrams of A. Since we have taken
D = A as an abelian category, we can replace the huge inductive system
of finite subdiagrams of A by a much smaller one: we consider the system
of all subcategories of the form ⟨p⟩psab for all p ∈ A (roughly speaking, the
pseudo-abelian subcategory of A generated by p). The advantage is that

C(⟨p⟩psab, T ) = C({p}, T ),

and the right-hand side is much more controllable. The key Lemma 7.3.16
allows us to use this observation to construct a functor C(A, T ) → A: tensor-
ing by the object X(p) gives a functor C({p}, T ) → A, and all these functors
for each p ∈ A are compatible with transition maps, so they induce a functor
C(A, T ) → A. Proving that it is an equivalence should be rather straightfor-
ward.
Now we are ready to prove the universal property of the diagram category,
which is in [2, Section 7.4]. We start with an abelian category A with a
factorization of T as above and we want to construct a suitable functor
L(F ) : C(D,T ) → A. The idea is to replace the category A by C(A, f) and
then use functoriality of the diagram category, see Proposition 7.4.1. Notice
that there is a typo at the beginning of page 166, in which the notation for
f and TA is confused. Finally, uniqueness follows with classical arguments.
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Talk 5: Nori’s rigidity criterion.
Take a diagram D and a representation T : D → R − Mod. So far we
have seen that the diagram category is abelian, it satisfies a certain univer-
sal property and under some assumptions it can be written as a category of
comodules over some coalgebra. The goal of this talk is to give a criterion
(Proposition 8.3.4) for the diagram category to be rigid, so as to replicate
Tannakian formalism. However, we cannot muse about rigidity if we have
not defined a tensor structure yet.
Morally, the tensor structure on the diagram category C(D,T ) should be in-
duced by a product structure on the diagram D. We therefore need to define
the notion of product of diagrams, of commutative product structure on a
diagram and of graded multiplicative representation. This is the content of
[2, Section 8.1]. If D comes equipped with all this extra information, it is
possible to define a tensor structure on C(D,T ), as discussed in Proposition
8.1.5.
Recall that C(D,T ) = A(D,T ) − Comod for some big coalgebra A(D,T ).
If R is a field or a Dedekind domain, the presence of a tensor structure on
C(D,T ) implies that A(D,T ) is also a commutative bialgebra. We can then
consider M = Spec A(D,T ), which is a monoid scheme. By some general
duality statement, A(D,T ) − Comod is isomorphic to the category of rep-
resentations of M . This sounds very Tannakian: we just need to make sure
that M is also a group scheme, rather than just a monoid scheme, and then...
Well, not so fast. We first need to take care of an annoying assumption in
Proposition 8.1.5, namely that the representation T takes values in (finitely
generated) projective R-modules. If this is not the case, duals and tensor
product do not commute, and good bye tensor structure on C(D,T ). On the
other hand, for constructing Nori motives, we really need to get rid of this
assumption with projective modules. If R is a field, we are very lucky be-
cause every finitely generated R-module is projective, even free. In this case
we have nothing to worry about, see Example 8.1.8. The rest of [2, Section
8.1] is devoted to establish a similar result in the case when R is a Dedekind
domain.
Summing up, under certain assumptions C(D,T ) is the category of represen-
tations of a certain monoid scheme M . Establishing rigidity is then equivalent
to ask whether M is also a group scheme. This is discussed in [2, Section 8.3].
The first definitions mimic the existence of duals in a Tannakian category,
although they are tailor-made for our setting. The criterion we are interested
in is Proposition 8.3.4, which is proved in a way which is similar to what we
did in the previous talk for constructing the equivalence A ∼= C(A, T ). First,
we prove that the monoid scheme which arises from a very small subcategory
of C(D,T ) is a group scheme, then we deduce that also M is a group scheme.
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Talk 6: Nori motives.
The goal of this talk is to introduce the category of Nori motives and start
proving rigidity. Before we get into the main topic, we need to learn how to
localize diagrams, which is written in [2, Section 8.2]. The idea is to translate
the localization of a tensor category with respect to one object into the
language of diagrams. We start with a diagram Deff, we choose our favorite
edge v0 to invert and we construct a new diagram D which is called the
localization of Deff at v0. Lemma 8.2.4 shows how to extend a representation
of Deff to D and Proposition 8.2.5 explains the relation between the diagram
categories of Deff and D.
It is finally time to introduce Nori motives, whose definition can be found in
[2, Subsection 9.1.1]. First, we define the diagram Pairseff of effective pairs
over a subfield k of C. Its vertices are given by triples (X, Y, i) where X is a
k-variety, Y a closed subvariety of X and i an integer. We can consider the
representation H∗ of Pairseff with values in abelian groups given by singular
cohomology. On vertices:

H∗ : Pairseff → Z− Mod, (X, Y, i) 7→ H i(X(C), Y (C),Z).

The category of effective mixed Nori motives is defined as the diagram cate-
gory

MMeff
Nori(k) := C(Pairseff, H∗).

In order to remove the adjective effective, we invert the vertex (Gm, {1}, 1).
These are all fancy definitions, but not very useful if we do not prove some-
thing about them. The main results that we need are Theorem 9.1.5 and
Theorem 9.1.10: the former is about rigidity of MMNori(k), the latter about
its universal property. If all the work we have done in the previous talks was
not in vain, we should be able to obtain both statements as a byproduct of
the abstract machinery of diagram categories. The path to follow is quite
clear: we define a product on Pairseff to get a tensor structure on MMNori(k),
then we check the assumptions of Nori’s rigidity criterion. However, there is
one little problem...
Defining a product on the diagram Pairseff is not complicated, since we can in-
duce it from taking products of varieties. However, for this product to yield
a tensor structure on the diagram category, our representation H∗ should
satisfies the property

H i+j(X1 ×X2,Z) = H i(X1,Z)⊗Hj(X2,Z)

(this is the constraint on the pairs (X1, Y1, i) and (X2, Y2, j) with Y1 = Y2 = ∅
for simplicity). But the singular cohomology of the product of two varieties
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is described by the Künneth formula, which is definitely not that simple in
general! This is a structural problem in the whole construction, and Nori
came up with a smart idea to circumvent it.
We turn to [2, Subsection 9.2.1], where the key concept of this idea is clari-
fied. We consider a subdiagram Goodeff of Pairseff consisting of all those pairs
(X, Y, i) whose cohomology is concentrated in degree i. For all these pairs,
the Künneth formula takes the simplified shape written above, so we can run
our beloved machinery of diagram categories for C(Goodeff, H∗). Then, one
proves that the categories C(Goodeff, H∗) and C(Pairseff, H∗) are equivalent
(Theorem 9.2.22) and all our problems suddenly disappear.
Since the whole argument is very involved, for the moment we content our-
selves with introducing good pairs and good filtrations, [2, Subsection 9.2.1].
The main ingredient for this subsection is the so called Basic Lemma, which
is Theorem 2.5.2. The book is so passionate about this result that they give
three different proofs for it. Allegedly the first one should be enough for our
purposes and is explained in [2, Subsection 2.5.2]. If you prefer to go through
some more enhanced versions using weakly constructible sheaves or perverse
sheaves, I am looking forward to learning some more high-tech stuff.
A couple of words about this lemma. Since we want to replace C(Pairseff, H∗)
with C(Goodeff, H∗), our intuition suggests that the subdiagram Goodeff

should be relatively big inside Pairseff. An inductive application of the Basic
Lemma implies that we can always find a filtration of an affine variety X
whose intermediate pieces consist of good pairs. The next step is to under-
stand how to relate this property to the diagram category, but you do not
need to worry about this, since it is a problem of the speaker coming after
you.

Talk 7: Rigidity of Nori motives.
Now you can start worrying about the problem of the last paragraph, since
it is the main topic of this talk. Our main goal is to prove rigidity of
MMNori(k), which is Theorem 9.3.10, or equivalently Theorem 9.1.5. We
will do this in two steps: first, we show that C(Pairseff, H∗) is equivalent to
C(Goodeff, H∗), then we check the assumptions of Nori’s rigidity criterion for
C(Good, H∗).
For the first part, by the abstract machinery of diagram categories, it is easy
to convince ourselves that we only need to construct a representation

T : Pairseff → C(Goodeff, H∗)
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satisfying a few minor properties. How do we cook this up? We go the long
way round and define T by the following diagram:

Pairseff C(Goodeff, H∗)

Cb(Z[Var])× Z Db(C(Goodeff, H∗))× Z

T

φ

R

H∗

Alright, this looks incomprehensible, so one thing at a time. First, the book
does everything with a "V" in front of Good, but the discussion here is
already quite long, so we will just forget about this "V". The vertical arrow
on the left sends (X, Y, i) to the cone of the closed immersion Y → X and
there is a copy of Z to remember i. The vertical arrow on the right takes
i-th cohomology, where i goes according to the Z-component. Finally, there
is this mysterious functor R which we need to construct. Before doing so,
please notice that this diagram really works only on objects, as there are
some subtleties with morphisms; anyway, I hope this gives an idea of what
is going on.
The definition of R is carried out in Proposition 9.2.18 and it uses the results
of [2, Subsection 9.2.2]. Let us try to construct this R by hands. Please
forgive how imprecise I am, but, roughly speaking, we need to map some
(complex of) variety X to a complex of good pairs. If X is affine, the Basic
Lemma already gives us the recipe: we can find a filtration of X, say

∅ = F0X ⊆ F1X ⊆ · · · ⊆ FnX = X

such that all intermediate pairs (FiX,Fi−1X, i) are good. We can then con-
struct a complex of objects in C(Goodeff, H∗) by passing through the long
exact sequence for relative cohomology.
However, it seems that not all varieties are affine, so we need to extend this
definition by replacing a variety with a Čech cover. The problem is that this
construction is not functorial, so one has to introduce rigidified Čech covers,
which in any case have nothing to do with rigid geometry. The book there-
fore spends Subsection 9.2.2 to explain this in detail, so that the definition of
R can be extended to all varieties, and then to complexes of varieties. This
discussion is only used to construct the functor R, for the rest we will not
need it elsewhere.
After this business, we should be convinced that we can replace C(Pairseff, H∗)
with C(Goodeff, H∗). In order to prove rigidity, we need to check the assump-
tions of Nori’s rigidity criterion, see [2, Section 9.3]. The first thing to do is
to define a tensor product on C(Goodeff, H∗), which is very straightforward
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for good pairs. The second assumption to be verified, namely the existence
of strong duals, follows from Lemma 9.3.8 and 9.3.9. Here is where some
intersection theory shows up. I fear I cannot say much more about the proof
of these lemmas, since my head starts spinning as soon as I read the words
"deformation to the normal cone", but I promise it will stop spinning before
we arrive at this point in the seminar.

Talk 8: Equivalence of the definitions of periods.
What do we do now that we have this gadget of Nori motives in our hands?
The goal of this talk is to prove that the several definitions of periods are
equivalent and to develop a deeper theory of periods.
In [2, Chapter 11] the possible definitions of periods are presented. Section
11.1 deals with the naive definition of periods as proper integrals of algebraic
differential forms over some algebraic integration domain. These are called
NC-periods and they form a set Peff

nc(k), which is actually a k-algebra, see
Proposition 11.1.7.
Then we turn to cohomological periods, as defined in [2, Subsection 11.3.1].
These come from the image of the period pairing of the mixed Hodge struc-
ture coming from a cohomology group of a k-variety relative to a simple
normal crossing divisor. They form a k-algebra which we denote by Peff(k).
Our goal is to prove that Peff

nc(k) = Peff(k), which is the content of Theorem
11.4.2. An ad-hoc proof is given right after the statement in [2, Section 11.4],
but why should we drive a Twingo if we have a Ferrari at our disposal? We
go back to [2, Section 8.4] to revisit this story from a motivic point of view,
with the aim of proving Theorem 11.4.2 through the discussion presented in
[2, Section 13.1].
In [2, Section 8.4] we go back to our abstract setting of diagram categories.
Fix a diagram D and suppose you are so lucky that you are given not just one,
but even two representations of D into R−Proj, say T1 and T2. We obtain two
diagram categories with two coalgebras A1 = A(D,T1) and A2 = A(D,T2).
In order to compare these two, one can construct a big R-module

A1,2 = colimF Hom(T1|F , T2|F ),

exactly in the same spirit as we did for End(T). If D comes with a product
structure which is respected by T1 and T2, then A1,2 becomes even a com-
mutative R-algebra. If we look at the scheme X1,2 = SpecA1,2 and take any
faithfully flat R-algebra S, an S-point of X1,2 corresponds to a morphism of
representations T1⊗S → T2⊗S. Moreover, we know that G1 = SpecA1 and
G2 = SpecA2 are monoid schemes, and they also act naturally on X1,2 on
the left and right respectively. Theorem 8.4.10 tells us that, if T1 and T2 are
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isomorphic and their diagram category is rigid, then G1 and G2 are group
schemes and X1,2 is a left G1- and right G2-torsor. An explicit description of
this torsor is given in [2, Subsection 8.4.3].
These are all nice words, but what do we do in practice? The diagram Pairseff

comes not only with our favourite representation H∗ given by singular co-
homology, but actually also with a representation H∗

dR given by de Rham
cohomology. There is an isomorphism between these two representations
after base change to C, which is induced by the comparison isomorphism.
Hence, we obtain a torsor X1,2 = SpecA1,2 under the motivic fundamental
group. The period isomorphism corresponds to a complex point of this tor-
sor, and evaluation at this point yields a map ev : A1,2 → P(k). This is
essentially the content of Theorem 13.1.4, then Corollary 13.1.10 uses some
properties of MMNori(k) to deduce immediately that P(k) = Pnc(k).

Talk 9: 1-Motives.
It is time to say goodbye to Nori motives for some time and welcome on the
stage of the seminar another member of the motivic family, namely 1-motives.
The goal of this talk is to introduce 1-motives by giving their definition, and
nothing more than that.
As a prerequisite for this, we need the discussion in [3, Theorem 4], which
deals with certain properties of the category of commutative algebraic groups.
This category is abelian, and its simple objects are given by Ga, Gm and sim-
ple abelian varieties. Every object is an iterated extension of these building
blocks in a canonical way, as pointed out by [3, Theorem 4.3]. Then we need
to survey certain properties of extensions groups in this category, which are
explained in [3, Section 4.2].
The main characters of this theory are semi-abelian varieties, which are ex-
tensions of an abelian variety by a torus. The two main results that we need
are Corollry 4.10 and Corollary 4.12. The discussions in [3, Section 4.3] and
[3, Section 4.4] build up on these two corollaries; although we will need these
results in the sequel, try to see how much of the proofs is reasonable to go
through during the talk.
Now pass to the definition of 1-motives in [3, Section 8.1] - and their defini-
tion only, as the rest will be a problem for the next speaker. Let k = Q or
k = C. A 1-motive M = [L → G] is the datum of

• a semi-abelian variety G (which we have just become familiar with);

• a free abelian group L of finite rank (which we are familiar with since
our Bachelor studies);

• a group homomorphism L → G(k) (so nothing scary).
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Morphisms are the natural ones, tensored with Q.
So far so good, but what is the point of spending eight talks on Nori motives
to end up with this definition? In order to avoid an uprising, please save the
future of the seminar by stating [3, Theorem A.7]. After constructing our
dear MMeff

Nori(k), we can restrict to the thick abelian subcategory generated
by motives which come from effective pairs of the form (X, Y, i) with i ∈
{0, 1}. This is actually equivalent to the diagram category associated with the
subdiagram of effective pairs of the form (X, Y, i) in which X has dimension
0 or 1. This means that this subcategory is itself a diagram category, and
all the machinery that has been developed so far can be fruitfully applied.
Moreover, one can show that the category of 1-motives is anti-equivalent to
said subcategory, which means that 1-motives are nothing but a more explicit
description of Nori motives for curves.
I fear we will not have time to explain this anti-equivalence in the seminar,
so we will assume it as a black-box. I will try to understand how feasible it
would be to at least describe this equivalence and insert it somewhere. In
any case, I guess the main ingredient should be to construct the Jacobian of
a curve...

Talk 10: The analytic subgroup theorem.
This talk is divided into two main parts: first, we introduce singular and
de Rham realization of the category of 1-motives, then we go through the
analytic subgroup theorem.
As a prerequisite to both of these topics, we need to define the exponential
map of a Lie group, which is the content of [3, Chapter 5]. Let G be a
connected commutative algebraic group defined over Q. The tangent space
g of G at the identity has a structure of Lie algebra. If you are scared of the
word "Lie algebra", fear not: since G is commutative, the Lie brackets on
g are trivial, which means that you can translate "Lie algebra" into "vector
space", "Lie subalgebra" into "vector subspace" and so on. Let Gan be the
analytification of G, which is a complex Lie group and let gC = g⊗ C.
The exponential map expG : gC → Gan realizes gC as the universal cover
of Gan, see [3, Section 5.2]. Thus, the kernel of this map is discrete, and
[3, Section 5.2] explains how to identify this kernel with Hsing

1 (Gan,Z). The
exponential map induces a correspondence between Lie subalgebras of gC and
Lie subgroups of Gan.
Next, we turn to [3, Section 8.1]. In the previous talk we have already
introduced the category 1−Motk of 1-motives over k = Q or k = C, which we
observed to be anti-equivalent to the subcategory of Nori motives generated
by the motives of curves, roughly speaking. Our goal is to define two faithful
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exact functors

Vsing : 1− Motk → Q− Vect, VdR : 1− Motk → k − Vect,

the so-called singular and de Rham realization respectively. We have already
met these two functors in the context of Nori motives, and one could actually
recover them in a natural way by restricting the corresponding realizations of
MMeff

Nori(k) to the category of Nori 1-motives and then apply the aforemen-
tioned anti-equivalence with 1−Motk. The problem of this approach is that
we have not explained how this anti-equivalence works, and the future of the
seminar depends on some more explicit description of these realizations.
The singular realization can be described rather quickly, see [3, Subsection
8.1.1]. Maybe it is useful to notice that the fibered product in Definition 8.3
is taken in the category of abelian groups. For the de Rham realization, we
first need to adapt the discussion of the previous talk about the universal
vector extension to the case of 1-motives, which is the content of [3, Sub-
section 8.1.2]. We first define a vector extension of 1-motives, then we show
that there is a universal vector extension M ′ for every object M in 1−Motk.
Finally the de Rham realization ([3, Subsection 8.1.3]) is obtained by taking
the Lie algebra of M ′. At this point, to our great surprise there is a period
isomorphism between these two realizations, see [3, Subsection 8.1.4]. If af-
ter 9 talks in this seminar you are still not convinced of the existence of this
period isomorphism, feel free to give the proof of Lemma 8.13.
Now comes a change of topic. The main ingredient for proving the period
conjecture for 1-motives is a result due to Wüstholz, the so-called analytic
subgroup theorem. Let me sketch the ideas behind this result.
Take a Lie subgroup B of Gan and define its algebraic points by B(Q) =
B ∩G(Q). There is a Lie subalgebra b of g such that expG(b) = B. The an-
alytic subgroup theorem states ([3, Theorem 6.1]) that there is an algebraic
point in B(Q) different from 0 if and only if there is an algebraic subgroup
H of G with Lie algebra h such that 0 ̸= h ⊆ b. Essentially, this means
that an analytic subgroup contains a non-zero algebraic point if and only if
it already contains a whole algebraic subgroup of G.
We will assume this result as a black box. The proof can be found in [5] and
it is a clever application of some techniques dear to transcendental number
theory to this algebraic setting. Although these techniques are fairly elemen-
tary and we would be able to understand the proof with the tools developed
so far, dealing with the details would lead us too far afield. In any case, a
nice summary of the proof is exposed in [4], which you are invited to have a
look at if you wish.
Assuming the analytic subgroup theorem, we turn to [3, Theorem 6.2], which
is a refinement of the analytic subgroup theorem. Given a point u ∈ gC such
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that expG(u) ∈ B(Q), there exists an algebraic subgroup H of G which is
uniquely determined by the following properties:

1. expG(u) ∈ B(Q);

2. Let π : G → G/H be the canonical projection. If we denote by g∨C
the dual of gC, then (g/h)∨ embeds into g∨. Then (g/h)∨ coincides
with Ann(u). Notice that Ann(u) is the intersection of (g/⟨u⟩)∨ with
g inside gC, so this is indeed a description of the algebraic points of
(g/⟨u⟩)∨.

This will be the main result that we are going to exploit in the proof of the
period conjecture for 1-motives, and the next step will be to reinterpret it in
the language of 1-motives.

Talk 11: The period conjecture for 1-motives.
We start by introducing periods in the context of 1-motives as in [3, Chapter
7]. Actually, the definitions given here are a simplified version of the ones
that we have seen in Talk 8, so we should be able to just recall them without
really explaining every detail. When the time for you to prepare this talk
comes, we will sit down and draw the analogy between these definitions, so
as to waste as little time as possible during the talk.
Our goal is to prove [3, Theorem 13.3]; the road is quite complicated, so fas-
ten your seat belts and follow me. During the last talk, we have introduced
this spectacular super powerful result, the analytic subgroup theorem. In
order to put it into action, we first have to translate it into the language of
1-motives, the first ingredient for this being [3, Theorem 8.3]. This is essen-
tially a technical result concerning the functor which associates to a 1-motive
its universal vector extension.
Now turn to [3, Chapter 9]. After some bla bla concerning periods, which
we should already be very familiar with at this point, we finally arrive at [3,
Theorem 9.7]. This is the actual reinterpretation of the analytic subgroup
theorem in terms of 1-motives, and the proof should be a not too unreachable
combination of [3, Theorem 8.3] and the classical analytic subgroup theorem.
Next, the period conjecture for 1-motives, namely [3, Theorem 9.10], follows
rather straightforwardly. It would be nice to quickly quote Corollary 9.12,
which requires no effort to be stated thanks to all the work we have already
done with Nori motives.
As a very elementary application in [3, Section 10.1] a five-line proof of the
transcendence of π is given. Considering how long and mysterious transcen-
dence proofs have been at their very origin, I am pretty sure Lindemann
would be proud of us if we managed to summarize his result in so few lines.
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Maybe you will be angry at me for the amount of material in this talk and
you will not include this in the talk, but I promise it is worth at least to have
a quick glance at the argument.
Dulcis in fundo, after the Odissey that we have been through so far, we can
prove [3, Theorem 13.3], which we could call the period conjecture for Nori
1-motives. The result is nothing surprising: thanks to what we have learnt
so far, this boils down to restate the period conjecture in the language of
Nori motives. The advantage is to have a much more solid and complete
description of the relations among periods, but it is truly nothing more than
exploiting the anti-equivalence with 1-motives. With this result in our hands,
we can live happily ever after.

Talk 12: t.b.a.
Either the proof of the analytic subgroup theorem or the anti-equivalence
between 1-motives and Nori 1-motives.
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