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1 Recollections on Class Field Theory

Let k be a finite field and X a geometrically connected curve over k. Then F = K(X )
is a global field in characteristic p. If x ∈ X is a closed point we denote by Ox
the completion of OX at x, and by Fx it’s fraction field. Let A = AF = ∏′ Fx and
O=∏

Ox.
Recall global class field theory for F. In here we fix a closure Fsep of F and

a maximal abelian extension Fab ⊂ Fsep. Let ΓabF = Gal(Fab/F). Then we’ve con-
structed an Artin reciprocity map Art=ArtF

Art: F×\A×
F ,→ΓabF

which is the unique homomorphism sending uniformizers to Frobenii. The Artin
map is injective and induces an isomorphism Ârt: àF×\A×

F
∼−→ΓabF .

Our goal is to relate the above theorem to the arithmetic geometry of the curve
X /k. We start by stating an unramified variant of the above. Let Fnr,ab ⊂ Fsep be
the maximal unramified abelian extension of F and Gnr,ab be it’s Galois group.

Theorem 1.1 (Unramified Class Field Theory). There is an (injective) Artin reci-
procity homomorphism

Art: F×\A×
F /O× ,→Γ

nr,ab
F

taking uniformizer to Frobenii. It induces an equivalence on profinite completions.
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To see the geometry in this, we prove a baby case of a deep statement about
bundles on curves.

Lemma 1.2. The quotient A×
F /O×

F is canonically isomorphic with the group of divi-
sors on X . The quotient F×\A×

F /O×
F is canonically isomorphic to Pic(X ).

Proof. Just send ( fx)x to vx( fx)[x].

Lemma 1.3. The étale fundamental group πét1 (X ,η) with coefficients in the generic
point identifies canonically with Γnr

F . Hence, the abelianized fundamental group,
πét1 (X ,η)ab =πét1 (X ,η)/[π1,π1] identifies with Γ

nr,ab
F .

Here is a reformulation of Theorem 1 which is equivalent to it but stated in a
way which is closer to the Langlands phisolophy and geometry. This implies the
theorem above by a Pontrjagin duality style statement, which we sketch below.

Theorem 1.4. Let ℓ be a prime number, possibly equal to p. There is a bijection
between characters

Hom(Pic(X ), Z̄×
ℓ )↔Hom(π1(X ), Z̄×

ℓ )

such that, if χ corresponds to ρ then χ(O ([x]))= ρ(Frobx).

Remark 1.5. The Picard group Pic(X ) is finitely generated as we will see below,
hence it follows that

Hom(Pic(X ), Z̄×
ℓ )= colim

E/Zℓ

Hom(Pic(X ),O×
E )= colim

E/Zℓ

Hom(P̂ic(X ),O×
E )=Hom(P̂ic(X ), Z̄×

ℓ ).

Also, if π1(X ,η)Z,ab denotes the inverse image of FrobZ ⊂ π1(Fq) via the map
π1(X )ab → π1(Fq), then the image Art(Div) = π1(X )Z,ab and in fact this is a dense
subgroup of π1(X )ab as the argument below implies. One also has Hom(π1(X )Z,ab, Z̄×

ℓ
)=

Hom(π1(X ), Z̄×
ℓ

). Hence one can really write a diagram

Hom(Pic(X ), Z̄×
ℓ

) Hom(π1(X )Z, Z̄×
ℓ

)

Hom(P̂ic(X ), Z̄×
ℓ

) Hom(π1(X ), Z̄×
ℓ

)

∼=

∼=
∼=

Remark 1.6. There is a group structure on both sides since Z̄ℓ
× is abelian. A for-

tiori, this is an isomorphism of groups: the Picard group is generated by principal
divisors so we can compare χρ1ρ2 with χρ1χρ2 on those, where it follows from the
stated condition.
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Remark 1.7. The finite generation of Pic(X ) also implies that Pic(X ) ,→ àPic(X ),
and hence the Abel-Jacobi map is already injective before profinite completion.

Lemma 1.8. Let G be a profinite abelian group and Λ a topological group con-
taining Q/Z abstractly. Then if g ∈G is different from the identity e, we can find a
continuous homomorphism χ : G →Λ with χ(g) 6= e.

Proof. Since G is Hausdorff we can find an open subgroup U with g ∉ U . Then
G/U is a finite group and we can find a continuous character χ′ : G/U → Z/NZ
with χ′(g) 6= 0. But by assumption we can embbed Z/NZ ,→Λ.

Proposition 1.9. Theorem 1.4 implies Theorem 1.1.

Proof. To show that this statement implies the previous one, note that there is a
map Art: DivX → π1(X )ab sending [x] 7→ Frobx. The statement can be rephrased
by saying that for all χ there is a ρ, and for all ρ there is a χ making

DivX πab1 (X )

Pic(X ) Z̄×
ℓ

Art

χ

ρ

commute. Suppose that D is a divisor and that D = div f for f ∈ F. Then all
characters ρ : Pic(X ) → Z̄×

ℓ
satisfy ρ(O (D)) = ρ(O ) = 1, which implies that for all

characters χ : πab1 (X ) → Z̄×
ℓ

we have χ(Art(D)) = 1. But this implies Art(D) = 1 by
the Lemma above.

We get then a map Art: Pic(X )→π1(X )ab, and if L is sent to zero, then it has
to be sent to zero in P̂ic(X ) since every cocharacter ρ will kill it and the Lemma
above. Hence the map is injective.

Now let H ⊂π1(X )ab be the closure of the image of P̂ic. The quotient π1(X )ab/H
is a non-zero profinite group and hence admits a non-trivial character by the
Lemma above. Lifting this we obtain a cocharacter of π1(X )ab which is trivial
on all Frobenii, but the corresponding ρ would have to be the zero cocharacter.
Contradiction.

As a corollary, we get a Frobenius density statement for global function fields.

Corollary 1.10. The group π1(X )ab is topologically generated by the Frobenius ele-
ments. The same holds for π1(X ) if one replaces Frobenius elements with Frobenius
conjugacy classes.
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1.1 How does the Picard group look like?
Here is a small section to help with the intuition behind the results of geometric
class field theory. Here is a result we will prove later on:

Proposition 1.11. If X is a geometrically connected, smooth curve over a finite
field then Pic0(X ) is finite.

Proof. Later.

So the group Pic0(X ) works as the finite part of Cl(F), and so behaves a bit
more like its number field counterpart.

Example 1.12 (The rational case). This is the trivial case of the whole theory.
Recall that X /Fq is of genus 0 if and only if it is a form of P1

F̄q
. Hence, we get a

sequence

1→
�����
π1(P1

F̄q
)→π1(X )→ΓFq → 1

which implies that π1(X ) = Ẑ, and that the map Pic(X ) → π1(X ) sending OX (1) to
the generator (which is the frobenius at every point) has the desired property.

Note that if Γk 6= Ẑ then the statement P̂ic(X ) ∼= π1(X )ab, which makes sense
for every field k and geometrically integral smooth curve X /k, cannot be true.

Example 1.13 (Elliptic curves). Let (E, e) be an elliptic curve over a finite field.
One can show that if Ē is the base change to the algebraic closure then

π1(E, e)∼=
∏
ℓ 6=p

Z2
ℓ×Zp,

where Zp is either Zp (ordinary) or trivial (supersingular).
One then has a big diagram with short exact (and canonically split) rows as

below. Here, πab,0
1 (E) denotes the automorphisms of the maximal étale cover which

is defined over k.

1 Pic0(E) Pic(E) Z 1

1 Pic0(E) P̂ic(E) Ẑ 1

1 π
ab,0
1 (E) πab1 (E) Γk 1

1 π1(Ē) π1(E) Γk 1

∼

Art∼ Art∼
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In particular we learn something funny: that the fundamental group of π1(E)
cannot be abelian, as otherwise π1(Ē), which is abelian, would be isomorphic to
the finite group Pic0(E). As a matter of fact, πab,0

1 (E) is the finite group E(k).

Example 1.14. For a general X , the finite part Pic0(X ) of Cl(F) is computed as
the finite group of k rational points on the Picard variety Pic0

X /Fq
. More details in

the next section.
This is a well studied group, but I believe not completely understood: which

groups arise from this construction? What if you fix q? We know that unless you
allow some ramification then not every subgroup can occur. A result of Stichtenoth
[Sti79] says that if E is the exponent of Pic0(X ) and n is its order, then

n < E2(48n/e)4

where e is Euler’s constant. In particular (Z/2Z)107
cannot occur.

2 A digression on the Picard scheme

Let k be an arbitrary field and X /k a smooth, projective, geometrically connected
curve. All products are defined over k. The group Pic(X ) has a algebro-geometric
incarnation as the k-rational points of the Picard variety.

Definition 2.1 (The Picard functor). The Picard group sheaf PicX /k is defined to
be the fppf-sheafification of the functor T 7→Pic(X ×T).

The sheafification is indeed necessary since there are non-trivial line bundles
on X ×T which are trivial T-locally. When X admits a k-rational point, one can
show that

PicX /k(T)=Pic(X ×T)/Pic(T)

and furthermore, one has an embedding PicX /k(T) ,→Pic(X×T) consisting on those
bundles which are trivial along the section x×T.

If there is no k-rational section, not every object in PicX /k(T) needs to come
from a line bundle on XT . More precisely there is an extension

0→Pic(XT)/Pic(T)→PicX /k(T)→ ker(Br(T)→Br(X ×T))→ 0.

In particular, it is in general not true that PicX /k(k) = Pic(X ), unless you can also
control the Brauer group. For X /Fq, it is a celebrated fact that Br(Fq) = 0, hence
PicX /Fq (Fq)=Pic(Fq).

Here is a beautiful Theorem which we will state in the smallest generality as
needed for our purposes.
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Theorem 2.2. The functor PicX /k is represented by a disjoint union of proper vari-
eties over k. More precisely, it is isomorphic to Pic0

X /k×Z where Pic0
X /k is an abelian

variety.

To prove this, we compare to another functor, one which we’ll be able to de-
scribe more easily. Recall that if X → S is a morphism of schemes, then an ef-
fective Cartier divisor D ⊂ X is said to be a relative Cartier divisor (to S) if the
induced map D → S is flat.

Relative Cartier divisors are preserved via pullback, hence can be thought as
continuous families of divisors on the fibers. They are also clearly local on S (on
X -even).

Definition 2.3. Let X /k be a curve as before. We define the functor of effective
divisors

DivX /k : S 7→ {D ⊂ XS/S}

sending S to the set of relative effective Cartier divisors over S. This is an fppf-
sheaf on schemes over k.

One can show that the notion of degree works well in families, and hence that
one has a decomposition into clopen subschemes

Div= ⊔
n≥0

Divn, PicX /k =
⊔
n∈Z

Picn
X /k

where Divn(S) consists of divisors which are of degree n in every fiber of s → S.

Definition 2.4 (Abel-Jacobi map). We define the Abel-Jacobi map to be the functor

AJ: DivX /k →PicX /k (AJd : Divd
X /k →Picd

X /k)

given by sending a divisor D ⊂ XT to O (D) ∈Pic(XT)→PicX /k(T).

Remark 2.5. Traditionally, only AJ1 is called the Abel-Jacobi map, after identify-
ing Div1 ∼= X (cf. below).

It is of surprising elegance that this definition works without any assumptions
on S, as any relative effective Cartier divisor is an effective Cartier divisor in the
usual sense, and these always have associated line bundles.

Now to prove the representability of PicX /k it is enough by the group scheme
structure to show that Picd

X /k for high enough d. Recall the classical theorem that
when L is effective, then the set |L | of divisors linearly equivalent to L is given
by

|L | ∼−→H0(X ,L )\{0}/k∗ =Pm(k).

The Abel-Jacobi map allow us to understand the situation as follows:
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Proposition 2.6. Let d > max{2g−1,0}. Then the Abel-Jacobi map AJ: Divd →
Picd is a fiber bundle with fibers Pd−g, étale-locally trivial (even Zariski locally if
it admits a section). In particular, if Div is representable then so is Pic.

Proof. By [BLR90, §8.2 Prop. 7], one even has that AJd is a Zariski locally trivial
projective bundle if one assumes that X has a rational point. The bundle is given
by the pushforward of the universal line bundle trivialized at the given section.
One needs the degree asumption to use the Riemann-Roch Theorem to prove the
relative representability here.

In general, one reduces to this situation since étale locally X has a rational
point.

Remark 2.7. Here is a way to see from this that if k is a finite field then Pic0(X )
is finite. It is enough to show that Picd(X ) is finite for some d, but this admits a
surjection from Divd(k), for which one can easily give an upper bound.

Note that this would follow from the reprsentability of Pic if you assume the
existence of a rational point or if you assume Weddeburn’s Theorem so that you
know that Pic0(X )=Pic0

X /k(k).

Example 2.8. Exercise: Use the above to give a relation between the rational
points of Pic0 and of X , as explicitly as you can.

Now, we turn to the representability of Div. Intuitively, a point in Div corre-
sponds to a sum of points in X , but the order does not matter. To make this idea
precise, we construct a morphism

Σ : X d →Divd

which takes sections f i : T → X to the divisor Σd
i=1Γ f i , which indeed is a relative

effective Cartier divisor since X is smooth. On a:

Proposition 2.9. The map Σ above induces an isomorphism

Σ : X d/Sd
∼−→Divd

where X d/Sd is the fppf-sheafification of the naive presheaf quotient of X d by the
Sd-action permuting the components.

Proof. We’ve seen that Divd is a sheaf. Clearly the induced map on the pre-sheaf
quotient

Σpre : (X d/Sd)pre ,→Divd

is a monomorphism. Call a section in the image of Σpre horizontal. To show that
it becomes an isomorphism after sheafification, we have to show that any section
T →Divd is fppf-locally on T horizontal.
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But D → T is an fppf-cover for d > 0. (The reader is invited to deal with
this case on their own.) Base changing along itself we get a section, that is, the
diagonal, hence DD has at least one horizontal component. Throwing away all
horizontal components, we finish by inducion on d.

Finally, we have the last breath of the proof of the main Theorem of the section.
Namely that X d/Sd is a scheme and can be locally computed by the invariant
sections of the Sd action on the associated rings. The miracle, in dimension 1, is
that this quotient is even smooth.

Proposition 2.10. The sheaf X d/Sd is represented by a scheme. If Spec A ⊂ X is
an affine open, then Spec(A⊗d)Sd is an affine open of X d/Sd and these cover X d/Sd.
Furthermore, X d/Sd is smooth proper variety.

Proof. I will not mention much about the first part, which is well known. For the
smoothness, note that this is an étale local statement, which can be reduced to
X = A1 and the result is the celebrated theorem on symmetric polynomials, valid
over any field and characteristic:

k[T1, . . . ,Tn]Sn ∼= k[T ′
1, . . . ,T ′

n].

The properness follows from the surjection X d → X d/Sd.

Remark 2.11. In fact, Pic is even projective but this is a much harder and cele-
brated Theorem due to Weil. It uses the moduli description to cook up an ample
line bundle using the universal one.

We leave the proof that this implies the Main Theorem of this section as an
exercise to the reader.

3 The geometrization: character local systems

In this section we let Λ = Z̄ℓ, where ℓ is an arbitrary prime number, k be an
arbitrary field and ksep a fixed separable closure.

If X is an algebraic variety over k, it follows from Grothendieck’s reinterpre-
tation of Galois theory that Hom(π1(X ),Λ×) can be seen as isomorphism classes
of rank 1 local systems on X , canonically once a base point x = Specksep → X has
been chosen.

Definition 3.1. For any X locally noetherian scheme we denote by Loc1(X ,Λ) =
Loc1(X ) the category of rank 1 local systems of Λ-modules on X , that is, the subcat-
egory of étale Λ-modules on X which are étale-locally isomorphic to Λ.

If X is connected, then the set of isomorphism classes in Loc1(X ) is identified
with Hom(π1(X ),Λ).
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Concretely, given a local system L on X , trivial over some Galois cover Y /X ,
we can pick a point y → Y lifting x and then πét1 (X , x) will act on Λ linearly by
sending automorphism ϕ to

Λ= L y
∼−→ Lϕ(y) =Λ.

where equality is used to emphasize the trivialization. The converse is given by
descent and over the cover corresponding to the kernel of πét1 (X , x) →Λ× (or the
universal cover).

Much more interesting is how to categorify the morphisms Pic(X ) → Λ×. We
start with a definition. If G is a smooth algebraic group over k we denote by
m : G ×G → G its multiplication and by πi : G ×G → G its natural projections for
i = 1,2.

Definition 3.2. Let G be a smooth commutative algebraic group over k. A charac-
ter local system on G is a local system of Λ-modules L on G such that there exists
an isomorphism

m∗L ∼= L⊠L :=π∗
1L⊗π∗

2L.

We denote the group of isomorphism classes of such, where a morphism is just a
morphism of local systems, as CharLoc(G,Λ)=CharLoc(G). Note that this implies
that the rank of L is 1.

One can show that if G is connected, then the isomorphism above has a canon-
ical representative satisfying some sort of cocycle condition. More precisely there
is an equivalence of groupoids between the category of character local sytems on
G and HomGrp(G,BΛ), the mapping space in the (2,1)-category of group stacks.

Example 3.3. Here is an example/exercise: let G be the group Z seen as a con-
stant group scheme over k. Show that a rank n character local system in the
sense above is the same as a rank n local system on Speck, ie. to a continuous
representation π1(k)→GL(Λ,n).

You can generalize this to other free abelian groups. More crucial however is
the observation that if G is a finite (or torsion) constant group, then all character
local systems on G are trivial.

We can now state the main theorem of the section: a categorification result for
the homomorphism space.

Theorem 3.4. Let G be an extension of a connected commutative algebraic group
over k and a constant group scheme of the form Zn. Then there is a canonical
bijection

Hom(G(k),Λ×)∼=CharLoc(G)/∼=
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between characters of G(k) and isomorphism classes of character local systems on
G.

Proof. We begin by reducing to the case of G connected. Let 0→G0 →G →Zn → 0
be a short exact sequence of commutative k-group schemes with G0 connected
then

0→CharLoc(Z)→CharLoc(G)→CharLoc(H)→ 0

is exact. A cheating argument is to use that G has a rational point (the identity)
and so the original sequence is in fact split and CharLoc is an additive functor.
Now it since comparision isomorphism is canonical and natural (cf. below) we now
assume that G =G0 is connected by the five lemma.

The comparison isomorphism is given by the “Sheaf-Function correspondence”.
Namely we consider

SF : CharLoc1(G)→Hom(G(k),Λ×)
L 7→ (x 7→ tr(Frobx|Lx)).

More precisely if x : Speck → G is a rational point then the Frobenius arise via
the pullback

x∗ : Loc1(G)→Loc1(SpecFq)=Λ-ModẐ
rk=1

and we can take the trace in this category. This is indeed a function with values in
Λ×, since the Frobenius is an invertible operator on a 1 dimensional vector space.
To see that it is a morphism of groups, use that m∗L ∼= L⊠L and the fact that

Mx+y = (x, y)∗m∗M ∼= (x, y)∗M⊠M = Mx ⊗My

in Loc1(SpecFq). (This also implies that the trace is invertible.)
The converse starts with a map f : G(Fq) →Λ×. The Lang isogeny is defined

for G connected as follows

LG : G →G

g 7→Frob(g)g−1

It is a surjective group homomorphism (isogeny) which is even a Galois étale cover
with fiber G(Fq).

(Sketch: compute the differential at identity which will be multiplication by −1
since the Frobenius differential vanishies. This implies surjectivity and smooth-
ness by connectedness. The kernel (which is then smooth) can be seen to be finite
by computing the closed points kerLG(k̄)=G(k̄)Ẑ =G(k).)
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Now by descent we get a local system N on G for which L∗
G N is trivial. This is

a character local system since LG ×LG = LG×G and so we can descend the trivial
isomorphism m∗Λ∼=Λ⊠Λ to N.

We have to check that these constructions are inverse to each other. Note that
if x ∈G and Frobx is its Frobenius conjugacy class (recall that π1(G) could be non-
abelian) then Frobx gets sent to x ∈G(k) via the Lang isogeny. Hence the trace of
Frobenius of N at x is just f (x).

A similar argument yields that if you know that (M,ψ) is a character sheaf
and L∗

G M ∼= Λ then M ∼= N. This is by descent along the Lang isogeny, which
amounts to putting a G(Fq)-structure on Λ. To see that this is true, we use that
Frob∗M ∼= M to see that

L∗
G M = (Frob∗, ι)∗m∗M =Frob∗M⊗ ι∗M ∼= M⊗ ι∗M = (1G , ι)∗m∗MΛ

since m◦ (g, g−1) factors through the identity section, and e∗M ∼=Λ by the charac-
ter sheaf property.

Corollary 3.5. The group Hom(Pic(X ),Λ×) is isomorphic to CharLoc(G).

4 Geometric Categorified Unramified Class Field
Theory

Let k be an arbitrary field, X a geometrically connected smooth curve. As before
Λ= Z̄ℓ where ℓ is a prime, possibly equal to the characteristic of the field. We can
now state the Main Theorem of these notes.

Theorem 4.1 (Main Theorem). Pullback along the Abel-Jacobi map induce an
equivalence of categories

AJ∗
1 : Loc1(X ,Λ) ∼−→CharLoc(PicX /k,Λ).

Lemma 4.2. Projective spaces Pd
k̄

are simply connected.

Proof. The Riemann-Hurwitz formula tells us that P1
k̄

is simply connected. For
n ≧ 2, we can use induction and the fact that on connected smooth variety of
dimension ≧ 2 over an algebraically closed field effective ample divisors are con-
nected. This implies that if H is a hyperplane of Pn

k̄
then the pre-image over a

connected étale cover will be connected, hence map isomorphically to H by induc-
tion. But this implies the degree is 1.

Alternatively, one can use that product of simply connected varieties over alge-
braically closed fields to conclude that P1 ×·· ·×P1 is simply connected. Then one
uses that π1 is a birational invariant to conclude the result.
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Proof (of Theorem). Consider the sequence of maps

X d → [X d/Sd]→ X d/Sd =Divd →Picd
X /k

Choose d high enough so that d >max{2g−1,0} and we have that f : Divd →Picd

is a projective bundle. SGA1.X.1.7 (which we can use because this is a proper
morphism with geometrically reduced, connected fibers), we have a sequence

π1(P1
k̄)→π1(Divd)→π1(Picd)→ 0

which by the lemma above we use to conclude that the middle arrow is an isomor-
phism. More crucially, pulling back induces an iso

Loc1(Picd) ∼−→Loc1(Divd).

Now start with a local system L on X . The box product

L⊠ · · ·⊠L ∈Loc1(X d)

admits a canonical Sd-action, which for d = 2 looks like

σ∗L⊠L =σ∗(p∗
1L⊗ p∗

2L)= p∗
2L⊗ p∗

1L ∼−→ p∗
1L⊗ p∗

2L,

which hence defines a line bundle on [X d/Sd]. In fact the category of local systems
on Divd = X d/Sd sits fully faithfully inside Loc1([X d/Sd]) via the pullback map
and is identified with those local systems with a trivial inertial action. This can
be formalized, for example, using Noohi’s computation of the étale fundamental
group of coarse moduli spaces associated to a stack [Noo04, Thm. 7.2].

Crucially, because we are in the rank 1 case, the inertial action of L⊠ · · ·⊠L
is trivial, eg. for d = 2 in the locus x1 = x2 say, we have that the canonical “switch”
map

L⊗L =∆∗(σ∗L⊠L)→∆∗(L⊠L)= L⊗L

is the identity.
Now we can define a composite functor

( )d : Loc1(X )→Loc1(X d)Sd
trv.in

∼= Loc1(Divd) ∼←−Loc1(PicX /k).

and we must show that in fact we can extend these to CharLoc(PicX /k). To argue
this we first note that

Ld ⊠Le ∼= Ld+e. (1)
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whenever we have defined all terms in the above equation. This begs us to define
Ld = L−1

−d when −d has been defined, and then

Ld = Ln+d ⊠L−d

whenever n+d and −d have been defined. Equation (1) now implies that this is a
well defined local system.

It is clear that these constructions are indeed inverse to each other.

As mentioned before, the startling thing about this formulation is that it makes
sense over every field. For k = C, it boils down to the identification of πab1 (X ) ∼−→
π1(Pic0

X /k) for a curve X . Using the analytic topology, one can even use Z-coefficients.
Restated in the language of Stacks, the Main Theorem says that

AJ∗
1 : Hom(PicX /k,BΛ×) ∼−→ Hom(X ,BΛ×)

where BΛ× is the classifying stack of Λ-local systems. Hence, X →PicX /k behaves
as a sort of commutative group-stackification of X . This cannot be true on the
nose, since in fact one also has a stacky version of the Abel-Jacobi map

AJ1 : X →P icX /k

mapping X to the Picard stack T 7→ BGm(XT). However, this P icX /k is still not
exactly the commutative group-stackification of X , it only has a universal prop-
erty for reflexive group stacks (A confusion arises from the distiction between the
Jacobian and the Albanese variety, which is the Jacobian of the Jacobian).

For an alternative proof of the categorical unramified geometric class field the-
ory pursuing these ideas, see the notes on “Unramified geometric class field theory
and Cartier duality” by Justin Campbell.
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