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1. Introduction

These notes are based on the lectures I gave at the Workshop on Affine Flag Man-
ifolds and Principal Bundles which took place in Berlin in September 2008. There
are three chapters, corresponding to the main topics of the course. The first one is
the construction of the affine Grassmannian and the affine flag variety, which are
the ambient spaces of the varieties considered afterwards. In the following chapter
we look at affine Springer fibers. They were first investigated in 1988 by Kazhdan
and Lusztig [41], and played a prominent role in the recent work about the “fun-
damental lemma”, culminating in the proof of the latter by Ngô. See Section 3.8.
Finally, we study affine Deligne-Lusztig varieties, a “σ-linear variant” of affine
Springer fibers over fields of positive characteristic, σ denoting the Frobenius au-
tomorphism. The term “affine Deligne-Lusztig variety” was coined by Rapoport
who first considered the variety structure on these sets. The sets themselves appear
implicitly already much earlier in the study of twisted orbital integrals.

We remark that the term “affine” in both cases is not related to the varieties
in question being affine, but rather refers to the fact that these are notions defined
in the context of an affine root system. We include short reminders about the
corresponding non-affine notions, i.e., Springer fibers and Deligne-Lusztig varieties.
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No originality for any of the results in this article is claimed; this is especially
true for Chapter 3 where I am really only reporting about the work of others:
Goresky, Kottwitz, Laumon, MacPherson, Ngô, . . .

1.1. Notation

We collect some standard, mostly group-theoretic, notation which is used through-
out this article. Let k be a field (in large parts of Section 2 we can even work over
an arbitrary commutative ring). In Section 3, k is assumed to be algebraically
closed. In Section 4, k will be an algebraic closure of a finite field.

Let O = k[[ǫ]] be the ring of formal power series over k, and let L = k((ǫ)) :=
k[[ǫ]][1ǫ ] be the field of Laurent series over k. In Section 4, we let F = Fq((ǫ)).

Let G be a connected reductive group over k, or —in Section 4— over a
finite field Fq. We will assume that G is split, i.e., that there exists a maximal
torus A ⊆ G which is isomorphic to a product of copies of the multiplicative group
Gm. We fix such a split torus A. We also fix a Borel subgroup B of G which
contains A. We denote by W the Weyl group of A, i.e., the quotient NGA/A of
the normalizer of A by A, and by X∗(A) = Hom(Gm, A) the cocharacter lattice of
A.

For notational convenience, we assume that the Dynkin diagram of G is
connected. We denote by Φ the set of roots given by the choice of A, and by Φ+

the set of positive roots distinguished by B. We let

X∗(A)+ = {λ ∈ X∗(A); 〈λ, α〉 ≥ 0 for all α ∈ Φ+}

denote the set of dominant cocharacters. An index −Q denotes tensoring by Q,
e. g. we have X∗(A)Q, X∗(A)Q,+. Similarly, we have X∗(A)R, etc. Let ρ denote
half the sum of the positive roots. For λ, µ ∈ X∗(A), we write λ ≤ µ if µ− λ is a
linear combination of simple coroots with non-negative coefficients.

Now we come to the “affine” situation. We embed X∗(A) into A(L) ⊂ G(L)
by λ 7→ λ(ǫ) =: ǫλ, where by λ(ǫ) we denote the image of ǫ under the map

L× = Gm(L)→ A(L) ⊂ G(L)

induced by λ. The extended affine Weyl group (or Iwahori-Weyl group) W̃ is
defined as the quotient NG(L)T (L)/T (O). It can also be identified with the semi-

direct product W ⋉X∗(A). On W̃ , we have a length function ℓ : W̃ → Z≥0,

ℓ(wǫλ) =
∑

α>0
w(α)<0

|〈α, λ〉+ 1|+
∑

α>0
w(α)>0

|〈α, λ〉|, w ∈W,λ ∈ X∗(A)

Let S ⊂ W denote the subset of simple reflections, and let s0 = ǫα̃
∨

sα̃,
where α̃ is the unique highest root. The affine Weyl group Wa is the subgroup

of W̃ generated by S ∪ {s0}. Then (Wa, S ∪ {s0}) is a Coxeter system, and the
restriction of the length function is the length function on Wa given by the fixed
system of generators.

We can write the extended affine Weyl group as a semi-direct product W̃ ∼=
Wa⋊Ω, where Ω ⊂ W̃ is the subgroup of length 0 elements. We extend the Bruhat



Affine Springer Fibers and Affine Deligne-Lusztig Varieties 3

order on Wa to a partial order on W̃ , again called the Bruhat order, by setting
wτ ≤ w′τ ′ if and only if τ = τ ′, w ≤ w′, for w,w′ ∈Wa, τ, τ

′ ∈ Ω.
The subgroup G(O) is a “hyperspecial” subgroup of G(L), so we sometimes

refer to a case relating to G(O) as the hyperspecial case. We also consider the
Iwahori subgroup I ⊂ G(O) which we define as the inverse image of the opposite
Borel B−(k) under the projection G(O)→ G(k), ǫ 7→ 0.

In the case G = GLn, we always let A be the torus of diagonal matrices, and
we choose the subgroup of upper triangular matrices B as Borel subgroup. We
can then identify the Weyl group W with the subgroup of permutation matrices

in GLn, and we can identify the extended affine Weyl group W̃ with the subgroup
of matrices with exactly one non-zero entry in each row and column, which is of

the form ǫi, i ∈ Z. The subgroup Ω ⊂ W̃ is isomorphic to Z. For G = SLn, we
make analogous choices of the maximal torus and the Borel subgroup.

2. The Affine Grassmannian and the Affine Flag Manifold

We start by an introduction to the affine Grassmannian and affine flag variety of
the group G. Both affine Springer fibers and affine Deligne-Lusztig varieties live
inside one of these. As general references for the construction we name the papers
by Beauville and Laszlo [4], Pappas and Rapoport [63] and Sorger [75]. Let k be
a field (at least in 2.1–2.4 we could work over any base ring, though).

2.1. Ind-Schemes

We first recall the notion of ind-scheme. Roughly speaking, an ind-scheme is just
the union of an “ascending” system of schemes. To say precisely in which sense
the union is taken, it is most appropriate to use the functorial point of view on
schemes.

Definition 2.1. A k-space is a functor F : (Sch)
o → (Sets) which is a sheaf for the

fpqc-topology, i.e., whenever X =
⋃
i Ui is a covering by (Zariski-)open subsets,

then the sequence

F (X)→
∏

i

F (Ui) ⇉
∏

i,j

F (Ui ∩ Uj),

is exact, and whenever R → R′ is a faithfully flat homomorphism of k-algebras,
then the sequence

F (SpecR)→ F (SpecR′) ⇉ F (SpecR′ ×SpecR SpecR′)

is exact. A morphism of k-spaces is a morphism of functors.

Here by exactness we mean that the map on the left hand side is injective,
and that its image is equal to the subset of elements which have the same image
under both maps on the right hand side. The first axiom is called the Zariski-sheaf
axiom, for obvious reasons. The second condition is called the fpqc sheaf axiom,
where fpqc stands for fidèlement plat quasi-compact.
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Remark 2.2. 1. Because of the Zariski-sheaf axiom, one can equivalently con-
sider (contravariant) functors from the category of affine schemes to the
category of sets which satisfy the fpqc condition, or similarly (covariant)
functors G from the category of k-algebras to the category of sets for which
G(R) → G(R′) ⇉ G(R′ ⊗R R

′) is exact for every faithfully flat homomor-
phism R→ R′.

2. Every k-scheme Z gives rise to a k-space, also denoted by Z, by setting
Z(S) = Homk(S,Z), the S-valued points of Z. The sheaf axiom for Zariski
coverings is clearly satisfied, and Grothendieck’s theory of faithfully flat de-
scent shows that the fpqc sheaf axiom is satisfied as well.

3. The Yoneda lemma says that the functor from the category of schemes to the
category of k-spaces is fully faithful. Those k-spaces which are in the essential
image of this functor are called representable.

There is a standard method of “sheafification” in this context (see Artin’s
notes [2]). Therefore, many constructions available for usual sheaves can be carried
out for k-spaces, as well. For instance, one shows similarly as for usual sheaves that
inductive limits exist in the category of k-spaces, and that quotients of sheaves of
abelian groups exist.

Definition 2.3. An ind-scheme is a k-space which is the inductive limit (in the
category of k-spaces) of an inductive system of schemes, where the index set is the
set N of natural numbers with its usual order, and where all the transition maps
are closed immersions.

Of course, one could also allow more general index sets. Often one does not
make the restriction that all transition maps must be closed immersions, and
speaks of a strict ind-scheme, if this is the case. Since in the sequel this additional
condition will always be satisfied, we omit the strict from the notation. See Drin-
feld’s paper [20] for generalities on ind-schemes and remarks about the relation to
the notion of formal scheme.

We call an ind-scheme X of ind-finite type, or ind-projective, etc., if we can
write X = lim

−→
Xn where each Xn if of finite type, projective, etc. We call X

reduced, if it can be written as the inductive limit of a system (Xn)n where each
Xn is a reduced scheme. This is a somewhat subtle notion because usually there
will be many ways to write a reduced ind-scheme as a limit of non-reduced schemes.

Lemma 2.4. Let X = lim
−→n

Xn be an ind-scheme. Let S → X be a morphism from a

quasi-compact scheme S to X. Then there exists n such that the morphism S → X
factors through Xn.

Note that this does not follow from the universal property of the inductive
limit. Rather, the reason is that since S is quasi-compact, the S-valued points of
the sheafification of the inductive limit lim

−→
Xn are just the S-valued points of the

presheaf inductive limit, i.e., X(S) = lim
−→

Xn(S) for quasi-compact S.

We will see many examples of ind-schemes (which are not schemes) below. A
simple example which is quite helpful is the following: Suppose we want to view
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the power series ring k[[ǫ]] over the field k as a k-scheme. This is easy because a
power series is just given by its coefficients, so k[[ǫ]] is the set of k-valued points
of the countably infinite product A∞ =

∏
i≥0 A1, a perfectly reasonable scheme,

even if it is infinite-dimensional. In fact, this scheme is just the spectrum of the
polynomial ring in countably many variables. Similarly, we can express the set of
doubly infinite power series

∑∞
i=−∞ aiǫ

i as an infinite product of affine lines. Now

suppose we want to express the field k((ǫ)) of Laurent series
∑
i aiǫ

i with ai = 0 for
all but finitely many i < 0 in a similar way. Clearly, it is contained in the product∏∞
i=−∞ A1. But the condition that only finitely many coefficients with negative

index may be non-zero cannot be expressed by polynomial equations! Therefore
we cannot express k((ǫ)) as a closed subscheme of the “doubly infinite” product.
On the other hand, writing k((ǫ)) as the union

k((ǫ)) =
⋃

i≤0

ǫik[[ǫ]],

we find an obvious ind-scheme structure on k((ǫ)).

2.2. The Loop Group

We now fix a reductive linear algebraic group G over k (for most of this section, it
is not important whether G is reductive). The loop group LG of G is the k-space
given by the following functor:

LG(R) = G(R((ǫ))), R a k-algebra.

The terminology “loop group” refers to the fact that this construction is similar
to the construction of the loop group in topology. There one considers the space of
continuous maps from the circle S1 to the given topological group. In the algebraic
context, the circle is replaced by an infinitesimal pointed disc, i.e., the spectrum
of k((ǫ)). Similarly, we have the positive loop group L+G, defined by

L+G(R) = G(R[[ǫ]]), R a k-algebra.

The positive loop group is actually an (infinite-dimensional) scheme. Let us first
check this for GLn. The idea is to view k[[ǫ]] = A1

k(k[[ǫ]]) as an infinite product of
affine lines over k, as explained above. Via the closed embedding

GLn → Matn×n×Matn×n, A 7→ (A,A−1)

we identify GLn(R[[ǫ]]) with the set of matrices

{(A,B) ∈ Matn×n(R[[ǫ]])×Matn×n(R[[ǫ]]), AB = 1}.

Therefore L+G is the closed subscheme in
∏
i≥0(A

n2

× An
2

) given by the equa-
tions obtained from splitting the matrix equality AB = 1 into equations for each
ǫ-component. Given an arbitrary linear group G, we can embed G as a closed
subgroup into some GLn, and we see that L+G is a closed subscheme of L+ GLn.

Definition 2.5. The affine Grassmannian GrassG for G is the quotient k-space
LG/L+G.
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The quotient in the category of k-spaces is the sheafification of the presheaf
quotient R 7→ LG(R)/L+G(R).

Similarly, if we choose a Borel subgroup B− ⊆ G, then we have an Iwahori
subgroup I ⊆ L+G, which by definition is the inverse image of B− under the
projection L+G → G (which maps ǫ to 0). Instead of the quotient of LG by the
positive loop group L+G, we can consider the quotient by I:

Definition 2.6. The affine flag variety F lagG for G is the quotient k-space LG/I.

More generally, by taking quotients by “parahoric subgroups”, we can define
“partial affine flag varieties”. We will show below that the affine Grassmannian
and the affine flag variety are ind-schemes over k. In the case of GLn (and with
some more effort, of any classical group) these ind-schemes can be interpreted as
parameter spaces of lattices or lattice chains (satisfying certain conditions).

Remark 2.7. The loop and positive loop constructions can be applied to any scheme
over k((ǫ)) and k[[ǫ]], resp. In particular, one can construct the loop group for a
group G over k((ǫ)) which does not come from k by base change. One obtains
“twisted” loop groups, and their affine Grassmannians. This is worked out in the
paper [63] by Pappas and Rapoport. The basic construction is the same; note
however that the notion of parahoric subgroup is more subtle in general than in
our case, see [34]. Certain properties from the non-twisted case are shown to carry
over to the twisted case in loc. cit., but there are still many open questions.

2.3. Lattices

Let k be a field, and let R be a k-algebra. We denote by R[[ǫ]] the ring of formal
power series over R, and by R((ǫ)) the ring of Laurent series over R, i.e., the
localization of R[[ǫ]] with respect to ǫ. Let r, n be positive integers. The R[[ǫ]]-
submodule R[[ǫ]]n ⊂ R((ǫ))n is called the standard lattice, and is denoted by
ΛR = Λ0,R.

Definition 2.8. 1. A lattice L ⊂ R((ǫ))n is a R[[ǫ]]-submodule such that
(a) There exists N ∈ Z≥0 with

ǫNΛR ⊆ L ⊆ ǫ−NΛR, and

(b) the quotient ǫ−NΛR/L is locally free of finite rank over R.
2. A lattice L is called r-special, if

∧n
L = ǫrΛR.

We denote the set of all lattices in R((ǫ))n by Lattn(R), and the set of all
0-special lattices by Latt0n(R). Our goal is to equip these sets with an “algebraic-
geometric structure”. We will see below that Lattn and Latt0n are ind-schemes and
can be identified with the affine Grassmannian of GLn and SLn respectively.

We also define, for N ≥ 1, subsets

Latt(N)
n (R) ⊂ Lattn(R), Latt0,(N)

n (R) ⊂ Latt0n(R),

where the number N in part (a) of the definition of a lattice is fixed. The functors

Latt
(N)
n (R), Latt

0,(N)
n are projective schemes over k. Let us show this for Latt

0,(N)
n .
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(Then Latt
(N)
n (R) can be obtained as a disjoint union of schemes of the same form.)

The morphism of functors

Latt0,(N)
n (R)→ GrassN (ǫ−NΛk/ǫ

NΛk)(R), L 7→ L /ǫNΛR,

defines a closed embedding of Latt
0,(N)
n into the Grassmann variety of N -dimen-

sional subspaces of the (2N -dimensional) k-vector space t−Nk[[ǫ]]n/tNk[[ǫ]]n. The
image is the closed subscheme of all subspaces that are stable under the nilpotent
endomorphism induced by ǫ. We have

Lattn(R) =
⋃

N

Latt(N)
n (R), Latt0n(R) =

⋃

N

Latt0,(N)
n (R).

We obtain ind-schemes

Lattn =
⋃
Latt(N)

n , Latt0n =
⋃
Latt0,(N)

n .

Example 2.9. The ind-scheme Latt1 over k. The k-valued points of Latt1 are the
finitely generated k[[ǫ]]-submodules of k((ǫ)), i.e., the fractional ideals (ǫi), i ∈ Z.
So topologically, Latt1 is simply the disjoint union of countably many points.

Let us determine the ind-scheme structure. An R-valued point L ∈ Latt1(R),
where R is an arbitrary ring, is an R[[ǫ]]-submodule L ⊆ R((ǫ)). The conditions
that L is a lattice are equivalent to saying that L is generated, over R[[ǫ]], by an
element of R((ǫ))× (cf. Lemma 2.11). This unit of R((ǫ)) is determined by L up
to multiplication by units of R[[ǫ]].

We have

R((ǫ))× =

{
∑

i

aiǫ
i ∈ R((ǫ)); ∃i0 : ai0 ∈ R

×, aj nilpotent for all j < i0

}
,

so

R((ǫ))×/R[[ǫ]]× =
∐

i0

⋃

N≥1

{(a1, . . . , aN ); ai ∈ R nilpotent}

Here for fixed i0, the sets in the union over N are embedded into each other in
the obvious way (i.e., by extending tuples of smaller length by zeros).

This description shows that as an ind-scheme, Latt1 is highly non-reduced.
However, this phenomenon of non-reducedness will be of no importance for us.
Note that nevertheless, Latt1 is formally smooth, i.e., it satisfies the infinitesimal
lifting criterion for smoothness.

2.4. The Affine Grassmannian for GLn

We prove that the functor Grass (which we defined above as the quotient of the
loop group by the positive loop group) is representable by an ind-scheme in two
steps: In this section, we deal with the case of G = GLn, and in the next section we
consider the general case. In the case of the general linear group, we can describe
Grass quite explicitly in terms of lattices. Every element g ∈ LG(R) gives rise to
a lattice gΛR. We obtain:
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Proposition 2.10. The affine Grassmannian for GLn is isomorphic, as a k-space,
to Lattn. The affine Grassmannian for SLn is isomorphic to Latt0n.

To prove the proposition, one has to show that fpqc-locally on R, every lattice
is free over R[[ǫ]]: choosing a basis for a free lattice gives a representation by a
matrix in GLn(R((ǫ))) which is well-defined up to an element of GLn(R[[ǫ]]). It
is enough to achieve this after a quasi-compact faithfully flat base change R →
R′, because the quotient LG/L+G is the sheafification of the presheaf quotient.
Therefore the proposition follows from the equivalence of 1. and 4. of the following
lemma:

Lemma 2.11. Let L ⊂ R((ǫ))n be a R[[ǫ]]-submodule. The following are equivalent:

1. The submodule L is a lattice.
2. The submodule L is a projective R[[ǫ]]-module and L⊗R[[ǫ]]R((ǫ)) = R((ǫ))n.
3. Zariski-locally on R, L is a free R[[ǫ]]-module of rank n (i.e., there exist
f1, . . . , fr ∈ R such that (f1, . . . , fr) = (1) and for all i, L ⊗R[[ǫ]] Rfi

[[ǫ]] is
a free Rfi

[[ǫ]]-module of rank n) and L ⊗R[[ǫ]] R((ǫ)) = R((ǫ))n.
4. fpqc-locally on R, L is a free R[[ǫ]]-module of rank n (i.e., there exists a

faithfully flat ring homomorphism R→ R′ such that L ⊗R[[ǫ]]R
′[[ǫ]] is a free

R′[[ǫ]]-module) and L ⊗R[[ǫ]] R((ǫ)) = R((ǫ))n.

Note that in 4., usually one has R′[[ǫ]] 6= R′ ⊗R R[[ǫ]], and similarly in 3.

Proof. 1. ⇒ 2. To simplify the notation, we assume that ǫNΛR ⊆ L ⊆ ΛR. First
note that for s ∈ R, we have

ΛR ⊗R[[ǫ]] R[[ǫ]]s/L ⊗R[[ǫ]] R[[ǫ]]s = (ΛR/L )⊗R Rs

as R-modules, so although Rs[[ǫ]] usually differs from R[[ǫ]]s, this difference does
not matter for us. To prove 2., one shows that locally on R, there exists a basis
f1, . . . , fn of ΛR over R[[ǫ]] and i1, . . . in ∈ Z≥0, such that the elements ǫjfl,
l = 1, . . . , n, j = il, . . . , N − 1, form an R-basis of L /ǫNΛR. This can be achieved
by successively choosing suitable bases of the subquotients ker ǫi/ ker ǫi−1 (locally
on R) that are compatible with L .

2. ⇒ 3. Since L is projective of finite rank over R[[ǫ]], we find elements
g1, . . . , gr ∈ R[[ǫ]] which generate the unit ideal and such that for all i, L ⊗R[[ǫ]]

R[[ǫ]]gi
is free of rank n over R[[ǫ]]gi

. Then the absolute terms fi := gi(0) ∈ R
generate the unit ideal of R, and for all i with fi 6= 0, we have that gi is a unit in
Rfi

[[ǫ]], so

L ⊗R[[ǫ]] Rfi
[[ǫ]] = L ⊗R[[ǫ]] R[[ǫ]]gi

⊗R[[ǫ]]gi
Rfi

[[ǫ]]

is free of rank n over Rfi
[[ǫ]].

3.⇒ 4. Trivial.

4. ⇒ 1. Let R → R′ be as in 4., and write L ′ = L ⊗R[[ǫ]] R
′[[ǫ]]. By

assumption, L ′ is free over R′[[ǫ]], and in particular, for suitable N we have
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tNR′[[ǫ]]n ⊆ L ′ ⊆ t−NR′[[ǫ]]n. By intersecting with R[[ǫ]]n, we obtain the analo-
gous property for L . Furthermore,

(ǫ−NR[[ǫ]]/L )⊗R R
′ = ǫ−NR′[[ǫ]]/L ′

is locally free over R′, and since R′ is faithfully flat over R, ǫ−NR[[ǫ]]/L is locally
free over R. �

Example 2.9 shows that the affine Grassmannian for the multiplicative group
Gm = GL1 is not reduced. On the other hand, the affine Grassmannian for SLn is
integral (see [4], and [63], Corollary 5.3 and Theorem 6.1, which includes the case
of positive characteristic and also deals with other groups).

Similarly as for the affine Grassmannian, we can now show that the affine flag
variety LGLn /I is and ind-scheme. Here we let A be the diagonal torus in GLn,
we let B be the Borel subgroup of upper triangular matrices, so that B− is the
subgroup of lower triangular matrices. To describe F lagGLn

in terms of lattices,
we use the notion of lattice chain:

Definition 2.12. Let R be a k-algebra. A (full periodic) lattice chain inside R((ǫ))n

is a chain
L0 ⊃ L1 ⊃ · · · ⊃ Ln−1 ⊃ ǫL0,

such that each Li is a lattice in R((ǫ))n, and such that each quotient Li+1/Li is
a locally free R-module of rank 1.

Each element of LG(R) gives rise to a lattice chain inside R((ǫ))n by applying
it to the standard lattice chain

Λi,R =

n−i−1⊕

j=0

R[[ǫ]]ej+1 ⊕
n−1⊕

j=n−i

ǫR[[ǫ]]ej+1,

where e1, . . . , en denotes the standard basis of R((ǫ))n. Because the Iwahori sub-
group I(R) ⊂ GLn(R[[ǫ]]) is precisely the stabilizer of the standard lattice chain
Λ•,R, we get:

Proposition 2.13. Let F lag be the affine flag variety for GLn, and let R be a k-
algebra. Then F lag(R) is the space of lattice chains in R((ǫ))n. In particular, F lag
is an ind-scheme. The affine flag variety for SLn is the closed sub-ind-scheme of
all lattice chains (L•)• such that L0 is 0-special.

2.5. The Affine Grassmannian for an Arbitrary Linear Algebraic Group

To establish the existence of the affine Grassmannian as an ind-scheme in the
general case, we will embed a given linear algebraic group into a general linear
group in a suitable way. We use the following lemma due to Beilinson and Drinfeld.

Lemma 2.14 ([7], Proof of Theorem 4.5.1). Let G1 ⊂ G2 be linear algebraic groups
over k such that the quotient U := G2/G1 is quasi-affine. Suppose that the quo-
tient LG2/L

+G2 is an ind-scheme of ind-finite type. Then the same holds for
LG1/L

+G1, and the natural morphism LG1/L
+G1 → LG2/L

+G2 is a locally
closed immersion. If U is affine, then this immersion is a closed immersion.
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See also [63] Theorem 1.4 for a version which includes the twisted case. As
an application of the lemma, we obtain:

Proposition 2.15. Let G be a linear algebraic group over k. Then the quotient
LG/L+G is an ind-scheme over k. If G is reductive, then it is ind-projective.

Proof. First assume that G is a reductive group, the case which will be relevant for
us. Choose an embedding G→ GLn of G into some general linear group. Since G
is reductive, the quotient GLn /G is affine. In fact, a quotient of a reductive group
by a closed subgroup is affine if (and only if) the subgroup is reductive; see [70].
The lemma above, together with Proposition 2.10, then shows that LG/L+G is
an ind-projective ind-scheme over k.

In the general case, one shows that there exists an embedding G→ GLn×Gm

such that the quotient is quasi-affine. See [7], Theorem 4.5.1 or [63] Proposition 1.3.
�

Remark 2.16. 1. Note that in general, given a closed immersion of algebraic
groups G1 → G2, the induced morphism of the affine Grassmannians is not a
closed immersion. For an example consider the inclusion of a Borel subgroup
B into a reductive group G. The morphism LB/L+B → LG/L+G is a bi-
jection on k-valued points, but except for trivial cases is far from being an
isomorphism.

2. For a different method of constructing the affine Grassmannian in all relevant
cases, see Faltings’ paper [21].

Similarly, we obtain that the affine flag variety F lagG = LG/I is an ind-
scheme. We can either again use an embedding ofG into GLn or GLn×Gm, or show
that it is an ind-scheme by considering the natural projection F lagG → GrassG
which is a fiber bundle whose fibers are all isomorphic to the usual flag variety of
G.

Another interesting and important description of the affine Grassmannian for
a semisimple group G can be given in terms of G-bundles on a (smooth, projective)
curve. See the surveys by Kumar [49] and Sorger [75] for introductions to this point
of view. Here, we just sketch how the relationship is established. The basic idea is
to glue vector bundles on the curve C by gluing the trivial bundle on the pointed
curve C \ {pt} and the trivial bundle on the formal neighborhood Spec k[[ǫ]] of
the point to obtain a vector bundle (or more generally, a G-bundle) on C. Note
that this gluing is not an instance of faithfully flat descent, because in general the
homomorphism R→ R[[ǫ]] is not flat. It is flat if R is noetherian, or more generally
if R is a coherent ring (see [12] I §2, Ex. 12, [24]). For locally free modules, Beauville
and Laszlo [5] have proved directly that descent holds in this situation. To prove
that in this way one can construct all bundles, one uses the result of Drinfeld and
Simpson who have shown that G-bundles on C \ {pt} × S are trivial fpqc-locally
on S. Here the assumption that G is semisimple is obviously crucial (since for
instance for G = Gm, where G-bundles are just line bundles, this usually fails).
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2.6. Decompositions

Below we need the following decompositions. Write K = G(O), and denote by
X∗,+ the subset of X∗(A) consisting of all dominant coweights.

Theorem 2.17 (Cartan decomposition). The affine Grassmannian decomposes as
a disjoint union

Grass(k) =
⋃

λ∈X∗,+

KǫµK/K.

The closure of each “Schubert cell” KǫµK/K is a union of cells, and the clo-
sure relations are given by the partial order on dominant coweights introduced in
Section 1.1:

KǫµK/K =
⋃

λ≤µ

KǫλK/K

In the case of G = GLn, the translation element λ such that g ∈ KǫλK
is simply given by the elementary divisors of the lattice gΛk with respect to the
standard lattice Λk.

The corresponding result for the affine flag variety is the following. In fact,
in this case the geometric structure of each cell is very simple. We denote by

I = I(k) ⊂ G(O)

the Iwahori subgroup of G(k((ǫ))) given by I.

Theorem 2.18 (Iwahori-Bruhat decomposition). The affine flag variety decomposes
as a disjoint union

F lag(k) =
⋃

x∈fW

IxI/I.

The closure of each “Schubert cell” IxI/I is a union of Schubert cells, and the
closure relations are given by the Bruhat order:

IxI/I =
⋃

y≤x

IyI/I.

For every x ∈ W̃ , the cell IxI/I is isomorphic to Aℓ(x).

2.7. Connected Components

As we have seen in the example of G = GLn, the affine Grassmannian (and in
fact, the loop group) of G may have several connected components.

Definition 2.19. The algebraic fundamental group π1(G) of G is the quotient of the
cocharacter lattice X∗(A) by the coroot lattice.

Similarly as for the loop group of a topological space, we have

Proposition 2.20 ([7] Proposition 4.5.4; [63], Theorem 0.1). The set of connected
components of the loop group can be identified with π1(G).
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We denote the map which maps a point to its connected component by κ =
κG : G(L) → π1(G). We can describe the map κ explicitly as follows: given g ∈
G(L), the Cartan decomposition as stated above says that there exists a unique
λ ∈ X∗(A)+ such that g ∈ G(O)ǫλG(O). Then κ(g) is the image of λ under the
natural projection X∗(A) → π1(G). The reason is that the positive loop group is
connected. For the same reason, the map κ factors through the quotients GrassG
and F lagG, and we denote the resulting maps again by κ, or κG if we want to
indicate which group we refer to.

Example 2.21. If G = GLn, then we can identify π1(G) with the quotient of Zn by
the subgroup of elements (x1, . . . , xn) ∈ Zn with

∑
xi = 0, and hence π1(G) ∼= Z.

The map κ maps an element g ∈ GLn(k((ǫ))) to the valuation of its determinant.

The map κG is sometimes called the “Kottwitz map” because of its appear-
ance in Kottwitz’ papers [44], [45] on isocrystals. Cf. also the section about the
classification of σ-conjugacy classes in Section 4.2 below. Kottwitz works in the
p-adic situation and therefore has to define this map in a different way, and also
defines it for non-split groups; cf. [63] for a discussion of the relationship of the
different definitions. Note that in [26], [27], the same map is denoted ηG.

2.8. The Bruhat-Tits Building

We give the definition of the Bruhat-Tits building for G = PGLn (or G = SLn)
which is sometimes useful to visualize subsets of the affine Grassmannian or of the
affine flag variety. Bruhat and Tits developed this theory for arbitrary reductive
groups over local fields. See the books by Garrett [22], and by Abramenko and
Brown [1] (where the relevant buildings are called Euclidean and affine buildings,
respectively).

We let K denote a complete discretely valued field, and denote by k its
residue class field. For us, the relevant cases are either K = L = k((ǫ)), where k
is algebraically closed, and K = F = Fq((ǫ)). But in contrast to the ind-scheme
structure on the set G(L)/G(O), the theory of the building works equally well over
fields of mixed characteristic, say the field Qp of p-adic numbers, or the completion

of its maximal unramified extension Q̂ur
p . We denote by OK the valuation ring of

K. As above, we have the notion of OK-lattice inside Kn.

Definition 2.22. The Bruhat-Tits building for PGLn over K is the simplicial com-
plex B where

• The set B0 of vertices of B is the set of equivalence classes of OK-lattices
L ⊆ Kn, where the equivalence relation is given by homothety, i.e., L ∼ L ′

if and only if there exists c ∈ K× such that L ′ = cL .
• A set {L1, . . . , Lm} of m vertices is a simplex if there exist representatives

Li of Li such that

L1 ⊃ L2 ⊃ · · · ⊃ Lm ⊃ ǫL1.

The n-dimensional simplices are called alcoves. Clearly, every simplex is con-
tained in an alcove. We say that a lattice L ⊂ Kn is adapted to a basis f1, . . . , fn
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of Kn, if L has an OK-basis of the form ǫi1f1, . . . , ǫ
infn. The apartment corre-

sponding to the basis fi is the subcomplex of B whose simplices consist of vertices
given by lattices adapted to this basis. The elementary divisor theorem shows that
given any two vertices of B, there exists an apartment containing both. In fact,
one can show that given any two simplices, there exists an apartment containing
both. The apartment corresponding to the standard basis is called the standard
apartment.

The standard apartment is closely connected with the affine root system of
G. The geometric realization of the standard apartment can be naturally identified
with X∗(A)R. The set of vertices lying in the standard apartment can be identified
with X∗(A) = Zn/Z ·(1, . . . 1), the residue class of (i1, . . . , in) corresponding to the
homothety class of

⊕
ν ǫ

iνOKeν . The grid of affine root hyperplanes gives rise to
the simplicial structure; see the figures on pages 40, 41, and 42 for the irreducible
root systems of rank 2. In fact, the set of alcoves is equal to the set of connected
components of the complement of the union of all affine root hyperplanes

{x ∈ X∗(A)R; 〈x, α〉 = i}, α ∈ Φ, i ∈ Z.

Our choice of a standard lattice chain, or equivalently the choice of an Iwahori
subgroup, gives us a distinguished alcove, called the base alcove. The extended
affine Weyl group acts on the set of alcoves in the standard apartment. The affine
Weyl group acts simply transitively, and hence can be identified with the set of
alcoves, using the base alcove as a base point. On the other hand, the elements of
length 0 are exactly those elements which fix the base alcove. (For instance, in the
case of PGL3, there are 2 non-trivial rotations with center the barycenter of the
base alcove, fixing the base alcove.) The length of an element x of the (extended)
affine Weyl group is the number of affine root hyperplanes separating the base
alcove from the image of the base alcove under x. For a vertex of B represented
by L = gΛ, g ∈ PGLn(K), we call the residue class of val(det g) in Z/n the type
of the vertex. This number is independent of the choice of representative.

For n = 2, the situation is particularly simple:

Example 2.23. Let G = PGL2. In this case, the simplicial complex B is a tree,
as is easily seen using the notion of distance below. The notion of type gives B
the structure of a bipartite graph: all neighbors of a vertex of type 0 have type 1,
and conversely. The set of neighbors of a point represented by L can obviously
be identified with the projective line P1(k). We have an obvious notion of distance
between two vertices: Given vertices represented by L ⊆ L ′, we can choose bases
of the form b1, b2, and ǫd1b1, ǫ

d2b2 of L and L ′, and the distance is given by |d1−d2|
(which is independent of the choice of bases). See Figure 1 for an illustration.

The action of PGLn(K), or SLn(K), on B induces identifications

• F lagSLn
(k) = set of all alcoves in B,

• GrassPGLn
(k) = set of all vertices in B,

• GrassSLn
(k) = set of all vertices of type 0 in B.
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Figure 1. Part of the Bruhat-Tits tree for PGL2 over F2((ǫ)) (or
over Q2). One apartment is marked by thick lines.

3. Affine Springer Fibers

3.1. Springer Fibers

We start with a brief review of the classical theory of Springer fibers which provides
important motivation for the notion of affine Springer fiber. A survey of this topic
was given by Springer [74].

Let k be an algebraically closed field of characteristic 0, and let G be a
connected semisimple algebraic group over k. One can also work in positive char-
acteristic, provided one makes an assumption that the characteristic is sufficiently
large with respect to the group.

We fix a maximal torus A of G and a Borel subgroup B ⊂ G which contains
A. We denote the Lie algebras of these groups by g, b, a, respectively. We have
b = a⊕ n, where n is the Lie algebra of the unipotent radical of B.

Denote by g̃ the quotient G×B b of G×b by the B-action given by b.(g, x) =
(gb−1,Ad(b)x).
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Theorem 3.1 (Grothendieck, see [74] Theorem 1.4). The diagram

g̃
ϕ

//

ϑ

��

g

χ

��

a
ψ

// a/W

where

• ϕ maps (g, x) to Ad(g)(x),
• ϑ maps (g, x) to the a-component of x ∈ b = a⊕ n,
• χ is the map induced by the homomorphism k[a/W ] = k[a]W ∼= k[g]G ⊂ k[g].
• ψ is the canonical projection from a to the quotient of a by W ,

is a simultaneous resolution of χ, i.e.,

1. ϕ is proper, ϑ is smooth, ψ is finite, and
2. for all a ∈ a, the morphism ϑ−1 → χ−1(ψ(a)) is a resolution of singular-

ities (and in particular induces an isomorphism over the smooth locus of
χ−1(ψ(a))).

If G = GLn, then we can identify a/W with affine space An, and χ with
the map which sends x ∈ gln = Matn×n(k) to the coefficients of its characteristic
polynomial. Then χ−1(0) is the nilpotent cone, the subset of all nilpotent matrices.

Definition 3.2. The fibers of ϕ are called Springer fibers. For x ∈ g, we write
ϕ−1(x) = Yx (considered as a reduced scheme).

Note that for x ∈ g, we can rewrite the Springer fiber Yx as

Yx = {g ∈ G/B; Ad(g−1)(x) ∈ b}, (g, z) 7→ g, (1)

the inverse map being given by g 7→ (g,Ad(g−1)(x)). We note some properties of
Springer fibers:

Proposition 3.3 (see [74], Theorem 1.8). Let x ∈ g, and denote by H = ZG(xs)
0

the identity component of the centralizer of the semisimple part xs of x.

1. The number of connected components of Yx is #W/Wx, where Wx is the
Weyl group of H.

2. Each connected component of Yx is isomorphic to Y Hxn
, where xn is the nilpo-

tent part of x.
3. Yx is equidimensional of dimension 1

2 (dimZG(x)− rkG).

Part 3., which is the hardest, is due to Spaltenstein. It implies in particular
that ϕ is a “small morphism”. An interesting application of Springer fibers is the
construction of the irreducible representations of the Weyl group of G.

Springer fibers are usually very singular varieties. All the more surprising is
the following purity theorem (see Section 3.5 for a brief discussion of purity):
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Theorem 3.4 (Spaltenstein [72]). Let G = GLn. Then every Springer fiber Yx ad-
mits a paving by affine spaces. In particular, its (ℓ-adic) cohomology is concentrated
in even degrees and is pure.

If one works over the field of complex numbers, one can replace ℓ-adic coho-
mology by singular cohomology. Shimomura [71] has generalized the theorem to
Springer fibers for GLn in partial flag varieties, see also the paper [39] by Hotta
and Shimomura. On the other hand, the Springer fibers have severe singularities,
and in particular Poincaré duality fails for these varieties, even on the level of Betti
numbers.

3.2. Affine Springer Fibers

Now let k be an algebraically closed field, let O = k[[ǫ]], and let L = k((ǫ))
be the field of Laurent series. (The hypothesis that k is algebraically closed is not
necessary, and not even desirable for some applications; we make it here to simplify
the situation a little bit.) We fix a connected reductive linear algebraic group G
over k, and a maximal torus A ⊆ G. We denote by g and a the Lie algebras of
G and A, resp. There is no widely accepted notation for affine Springer fibers.
Often they are denoted by Grassγ (which is of course more appealing when the
affine Grassmannian is denoted by a shorter symbol like X (as in [41]) or XG (as
in [15]). We will denote affine Springer fibers by F(γ), a notation which is close to
the notation of [32], and make the following definition (cf. 1):

Definition 3.5. The affine Springer fiber associated with γ ∈ g(L) is

F(γ) = {x ∈ G(L); Ad(x−1)γ ∈ g(O)}/G(O),

a locally closed subset of Grass(k). We view F(γ) as an ind-scheme over k by
giving it the reduced ind-scheme structure.

Remark 3.6. 1. Note that all of the following cases can occur, depending on γ:
F(γ) = ∅, F(γ) is a scheme of finite type over k, F(γ) is a scheme locally of
finite type (but not of finite type) over k, F(γ) is not a scheme (but only an
ind-scheme).

2. In [61], Ngô gives a functorial definition of affine Springer fibers in terms of
G-bundles, and hence obtains a natural ind-scheme structure.

3. There is a variant of the definition where the Lie algebra g(O) of the max-
imal compact subgroup G(O) is replaced by the Lie algebra of an Iwahori
subgroup. Then we obtain affine Springer fibers in the affine flag variety of
G.

4. Another obvious variant is to replace the Lie algebra with the group itself,
and to replace the adjoint action by the conjugation action. At least if the
characteristic is 0 or sufficiently large, then one can switch back and forth
between these two points of view using a quasi-logarithm, see e. g. the work
of Kazhdan and Varshavsky, [42], 1.8.

Similarly as in Proposition 3.3 2., one can often reduce to the case that γ is a
topologically nilpotent element, i.e., that γn converges to 0 in the ǫ-adic topology,
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using the topological Jordan decomposition. See Spice’s paper [73] for details in
the group (rather than the Lie algebra) case.

3.3. General Properties

First note that multiplication by g induces an isomorphism F(γ) ∼= F(Ad(g)γ),
so we can study all non-empty affine Springer fibers, up to isomorphism, by con-
sidering γ ∈ g(O).

Recall that a semisimple element in g(L) is called regular, if its centralizer
is a maximal torus (i.e., if the centralizer is “as small as possible”). In the case
of GLn this just means that all eigenvalues over an algebraic closure are different.
Although G is split, the centralizer of a regular semisimple element γ will not be a
split maximal torus in general, because the field k((ǫ)) is not algebraically closed.
If char k = 0, then the algebraic closure of k((ǫ)) is the field of Puiseux series,

k((ǫ)) =
⋃

e∈Z≥0

k((ǫ
1
e )).

If char k > 0, then the field on the right hand side is the perfect closure of the max-
imal tamely ramified extension of k((ǫ)). See Kedlaya’s paper [43] for a description
of the algebraic closure and for further references.

For the remainder of Section 3, we make the assumption that the order #W
of the Weyl group of G is invertible in k. This implies that, even if char k > 0,
every maximal torus of G splits over a tamely ramified extension of L, i.e., over an
extension of the form k((ǫ

1
e )), where char k does not divide e. See [32] for a more

thorough discussion of the situation in positive characteristic.
The following proposition shows that only affine Springer fibers for γ regular

semisimple are “reasonable” geometric objects, at least for our purposes:

Proposition 3.7 ([41], §2 Corollary, Lemma 6). Let γ ∈ g(O). We have

dimF(γ) <∞⇐⇒ γ ∈ g(L) regular semisimple.

From now on, γ will always be assumed to be regular semisimple. In this
case, we get more precise information:

Theorem 3.8 ([41]; [9]). Let γ ∈ g(O) be regular semisimple (as an element of
g(L)).

1. Let T be the centralizer of γ in G(k((ǫ))), a maximal torus. Let Aγ be the
maximal split subtorus of T . Then Homk((ǫ))(Gm, T ) = X∗(T ) = X∗(Aγ)
acts freely on F(γ), and the quotient X∗(Aγ)\F(γ) is a projective k-scheme.

2. In particular, if γ is elliptic, i.e., X∗(Aγ) = 0, then F(γ) is a projective
k-scheme.

3. Let z(γ) ⊆ g(L) be the centralizer of γ, and let δγ be the map

δγ = ad(γ) : g(L)/z(γ)→ g(L)/z(γ).

Then

dimF(γ) =
1

2
(val(det(δγ))− rk g + dim aw) ,
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where w denotes the type of z(N) (see [41], §1, Lemma 2 or [32] 5.2) and aw

is the fix point locus of w in the Lie algebra a of the fixed maximal torus A.

A different way of obtaining the dimension formula is given by Ngô, [61] 3.8.
It was proved by Kazhdan and Lusztig ([41], §4 Proposition 1) that affine Springer
fibers in the Iwahori case are equidimensional. Equidimensionality in the Grass-
mannian case was proved by Ngô, see [61] Proposition 3.10.1.

For a moment, let us consider affine Springer fibers over a finite base field.
One reason why this is interesting is that the number of points of a quotient
X∗(Aγ)\F(γ) over a finite field can be expressed as an orbital integral:

#(X∗(Aγ)\F(γ))(Fq) = #X∗(Aγ)\{g ∈ G(F ); Ad(g−1)γ ∈ g(o)}/G(O)

=

∫

T (F )\G(F )

1g(o)(Ad(g−1)γ) dg/dt =: Oγ(1g(o))

for measures dg, dt such that G(O) and T (O) have volume 1. Such orbital integrals
are of great interest from the point of view of the Langlands program, and more
specifically of the fundamental lemma, a long-standing conjecture of Langlands
and Shelstad which was recently proved by Ngô, [61]. Ngô does use affine Springer
fibers along the way of his proof, but as Example 3.4.2 by Bernstein and Kazhdan
suggests, it is hopeless to “compute” the number of points of an affine Springer
fiber directly.

By the Grothendieck-Lefschetz fix point formula, one can express the number
of points of a variety over a finite field in terms of the trace of the Frobenius
morphism on the ℓ-adic cohomology. We will report on several results on the
cohomology of affine Springer fibers in Sections 3.5–3.7.

For classical groups, one can also express these numbers in a completely
elementary way, as numbers of lattices satisfying certain conditions.

3.4. Examples

3.4.1. SL2. For more details on the example in this section see [31] 6. We fix an
algebraically closed base field k of characteristic 6= 2, let G = SL2, denote by
A the diagonal torus, by Grass the corresponding affine Grassmannian, and by
x0 ∈ Grass the base point corresponding to the standard lattice Λ = k[[ǫ]]2.

Denote by α the unique positive root (with respect to the Borel subgroup of
upper triangular matrices). We regard α as the morphism A→ Gm, diag(a, a−1) 7→
a2. We denote by α′ its “differential”, i.e., the homomorphism

α′ : a(L)→ L,

(
a
−a

)
7→ 2a

For n ≤ −1, we set xn =

(
1 εn

1

)
.
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Lemma 3.9 (Nadler, [31] Lemma 6.2). 1. The affine Grassmannian is the dis-
joint union

Grass =
⋃

n≤0

A(L)xn,

and for each n ≤ 0, we have dimA(L)xn = |n|.
2. For γ ∈ a(O), setting v = val(α′(γ)), we have

F(γ) =
0⋃

n=−v

A(L)xn.

Proof. The proof is elementary; see [31]. In terms of the Bruhat-Tits tree for SL2,
we can understand the lemma as follows: The action of A(L) on the tree fixes the
standard apartment, and hence preserves the distance to the standard apartment.
One checks that xn has distance |n| to the standard apartment, and to prove the
first part, one has to prove that A(L) acts transitively on the set of points of a
fixed distance to the standard apartment.

It is clear that A(L) acts on F(γ), so F(γ) is a union of A-orbits, and the
lemma says, from the point of view of the building, that F(γ) is the set of all
points of type 0 of distance ≤ val(α′(γ)) from the standard apartment. �

We see that for val(α′(γ)) = 0, F(γ) ∼= X∗(A) is a discrete set, while for
val(α′(γ)) = 1 it is a chain of countably many projective lines where the i-th chain
and the (i + 1)-th chain intersect transversally in a single point, and no other
intersections occur. We can take the quotient Z\F(γ) and obtain a nodal rational
curve. This illustrates Theorem 3.8, 1.

Of course, one checks immediately that the above is consistent with the gen-
eral dimension formula stated above: for γ ∈ a(O) regular, with the notation of
Theorem 3.8, z(γ) = a, and w = id. The factor 1

2 arises because δγ is defined on
the whole (positive and negative) root space.

One can now go on to describe the A(k)-fix points and orbits in F(γ), and
hence compute its T -equivariant homology; see [31] 7 and Section 3.7 below. Since
there is only one positive root, for SL2 one is always in the “equivaluation” case,
see below.

3.4.2. The Example of Bernstein and Kazhdan. In the appendix to [41], J. Bern-
stein and D. Kazhdan give an example of an affine Springer fiber F(γ) in the
affine flag variety of G = Sp6 which is not a rational variety. More precisely, it has
an irreducible component which admits a dominant morphism to an elliptic curve
(whose isomorphism class depends on the element γ). This shows that one cannot
expect to have a closed formula for the number of points of an affine Springer fiber
over a finite field. Furthermore, this affine Springer fiber cannot have a paving by
affine spaces.
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3.5. Purity

In this section, k denotes an algebraic closure of Fp. Whenever we consider ℓ-adic
cohomology, we assume that ℓ is a prime different from p.

Let X0 be a separated Fq-scheme of finite type, and let X = X0 ⊗Fq
k. The

geometric Frobenius Fr ∈ Gal(k/Fq), i.e., the inverse of the usual (“arithmetic”)
Frobenius morphism x 7→ xq, acts on X via its action on the second factor of the
productX0⊗Fq

k, and hence on the ℓ-adic cohomology groupsHi(X) := Hi(X,Qℓ).

The cohomology is called pure, if for every integer i, the space Hi(X,Qℓ) is pure
of weight n in the sense of Deligne: For every embedding ι : Qℓ → C and every
eigenvalue α of Fr on Hi(X), |ι(α)| = qi/2. Note that this is really a property of
X; it is independent of the choice of X0 and q. Every X of finite type over k is
defined over some finite field.

There is a large class of varieties with pure cohomology:

Theorem 3.10 (Deligne). Let X be a smooth and proper k-scheme. Then the co-
homology of X is pure.

On the other hand, the cohomology of a singular variety will usually not be
pure. Springer fibers and affine Springer fibers are (expected to be) exceptions to
this rule. Another standard method of checking purity is to show that the variety
in question admits a paving by affine spaces. Since affine Springer fibers can have
cohomology in odd degrees, they cannot have such a paving in general, however;
cf. also Example 3.4.2. See Section 3.7 for positive results.

3.6. (Co-)homology of Ind-Schemes

In the sequel, it will sometimes be more useful to use homology rather than coho-
mology. One defines

Hi(X) = Hi(X,Qℓ) = HomQℓ
(Hi(X),Qℓ) = H−i

c (X,KX),

where KX denotes the dualizing complex of X, and the final equality is given by
Poincaré duality. Cf. [15] 3.3.

If X is an ind-scheme, say X =
⋃
nXn, with Xn of finite type and separated,

then we set
Hi(X) = lim

←−
Hi(Xn),

and
Hi(X) = lim

−→
Hi(Xn).

These groups are independent of the choice of representation of X as a union of
finite-dimensional schemes.

3.7. Equivariant Cohomology

One of the important tools in studying cohomological properties of affine Springer
fibers is equivariant cohomology. The centralizer T of γ acts on the affine Springer
fiber F(γ), and equivariant cohomology takes into account the additional struc-
ture given by this action. Under a purity assumption, the equivariant cohomology
is completely encoded by the 0- and 1-dimensional orbits of T ; see the Lemma of
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Chang and Skjelbred (Proposition 3.15). Furthermore, in favorable situations, for
instance if the cohomology is pure, the usual cohomology can easily be recovered
from the equivariant one. We sketch the definition of equivariant cohomology in
the ℓ-adic setting. Though elegant, it is not easy to digest because it uses ℓ-adic
cohomology of algebraic stacks. As long as one works over the field of complex
numbers, one can also use the classical topological version of equivariant cohomol-
ogy, see [30] and Tymoczko’s introductory paper [76]. The reference we follow in
the ℓ-adic setting is the paper [15] by Chaudouard and Laumon.

Let k be an algebraic closure of the field Fq with q elements, let p = char k.
Let X be a separated k-scheme of finite type, and let T be an algebraic torus
acting on X.

Definition 3.11. The T -equivariant ℓ-adic cohomology groups of X are

Hn
T (X) := Hn

T (X,Qℓ) := Hn([X/T ],Qℓ),

where [X/T ] denotes the stack quotient of X by the action of T .

For X = Spec k, the Chern-Weil isomorphism describes the equivariant co-
homology (with respect to the trivial action by T ). This is particularly important,
because for any X, writing H∗

T (X) :=
⊕

n≥0H
n
T (X), cup-product induces on

H∗
T (X) the structure of a graded algebra, and of a H∗

T (Spec k)-module. To state
the Chern-Weil isomorphism, we define

D
∗ := Sym∗(X∗(T )⊗Qℓ(−1)).

Here Qℓ(−1) is the Tate twist, i.e., the vector space Qℓ where the geometric Frobe-
nius acts by multiplication by q.

Theorem 3.12 (Chern-Weil isomorphism). There is a natural isomorphism

D
∗ −→ H∗

T (Spec k)

doubling the degree, i.e.,

Hi
T (Spec k) =

{
Symj(X∗(T )⊗Qℓ(−1)) if i = 2j is even
0 if i is odd

Proof. We give a sketch of the proof; see Behrend’s paper [8], 2.3, for details. Using

the Künneth formula, one reduces to the case T = Gm. Now [AN+1
k /Gm] has the

same cohomology as [Spec k/Gm], and the open immersion

PN = (AN+1 \ {0})/Gm → [AN+1/Gm]

gives us, by purity, that

Hi([AN+1/Gm]) ∼= Hi(PN ) ∼= Qℓ(−i)

for all i ≤ 2N . �
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Now we return to the case of an arbitrary separated k-scheme X of finite
type on which T acts. The Leray spectral sequence for the natural morphism
[X/T ]→ [Spec k/T ] has the form

Ep,q2 = Hp
T (Spec k)⊗Hq(X) =⇒ Hp+q

T (X). (2)

Definition 3.13. The scheme X (together with the given T -action) is called equiv-
ariantly formal, if the spectral sequence (2) degenerates at the E2 term.

If X is equivariantly formal, then

H∗
T (X) ∼=H∗(X)⊗H∗

T (Spec k),

H∗(X) ∼=H∗
T (X)⊗H∗

T
(Spec k) Qℓ,

so the usual and the equivariant cohomology determine each other in a simple way.
Because the differentials in the spectral sequence respect the Frobenius action, we
obtain

Proposition 3.14. Let X be as above, and assume that H∗(X) = H∗(X,Qℓ) is
pure. Then X is equivariantly formal.

Similarly as for usual cohomology, we define

HT
i (X) = HomQℓ

(Hn
T (X),Qℓ),

and if X =
⋃
nXn is an ind-scheme with Xn separated, of finite type, we define

Hi
T (X) = lim

←−
Hi
T (Xn), HT

i (X) = lim
−→

HT
i (Xn),

Equivariant cohomology incorporates the additional structure given by the
torus action of T on X. One way to make use of this is the following:

Proposition 3.15 (Lemma of Chang-Skjelbred, [15] Lemme 3.1). Let V be a finite-
dimensional vector space on which T acts algebraically, and let X ⊆ P(V ) be a
T -stable closed subscheme of the projective space of lines in V . Suppose that the
cohomology of X is pure. Denote by X0 the set of T -fix points in X, and by X1

the union of all orbits of T of dimension ≤ 1.

There is an exact sequence

HT
• (X1,X0)→ HT

• (X0)→ HT
• (X)→ 0,

where HT
• (X1,X0) denotes the relative equivariant homology (see [15] 3.5).

Therefore for pure varieties with torus action we can compute the equivariant
homology, and hence the homology, once we understand the 1-dimensional and 0-
dimensional T -orbits. This makes the following purity conjecture a central topic
in the theory of affine Springer fibers.

Conjecture 3.16 (Goresky, Kottwitz, MacPherson [31] Conj. 5.3). For every n ≥ 0,
the homology group Hn(F(γ)) is pure of weight −n.



Affine Springer Fibers and Affine Deligne-Lusztig Varieties 23

Assuming the conjecture, the usual cohomology is related to the equivariant
cohomology as explained above, and since the equivariant cohomology can be
described in terms of the fixed points and one-dimensional orbits of the torus, a
detailed study of the torus action yields an explicit description of the cohomology
of affine Springer fibers. In the case where γ is unramified (i.e., its centralizer is
split over L, and hence can be assumed to be equal to A), Goresky, Kottwitz and
MacPherson have proved:

Theorem 3.17 ([31] Theorem 9.2). Let γ ∈ a(O), and assume that F(γ) is pure.
Then Proposition 3.15 induces an isomorphism

HA
• (F(γ)) ∼= (k[X∗(A)]⊗D

∗)/
∑

α∈Φ+

Lα,γ ,

where

Lα,γ =

val(α′(γ))∑

d=1

(1− α∨)k[X∗(A)]⊗D
∗{∂dα}.

Here ∂α is the differential operator of degree 1 on D∗ corresponding to α.
Note that the set of A-fixed points in F(γ) is equal to the set of all A-fixed points
in Grass, and hence can be identified with X∗(A). Therefore its homology is just
k[X∗(A)]⊗D∗. See loc. cit. for details.

In the “equivalued” case, Goresky, Kottwitz and MacPherson have proved the
purity conjecture. Let γ ∈ g(L) be a regular semisimple element with centralizer
T . The element γ is called integral, if val(λ′(γ)) ≥ 0 for every λ ∈ X∗(T ), and it
is called equivalued, if for every root α of T (over an algebraic closure of L), the
valuation val(α′(γ)) is equal to some constant s independent of α, and val(λ′(γ)) ≥
s for every λ ∈ X∗(T ).

Theorem 3.18 ([32], Theorem 1.1). Assume that p does not divide the order of W .
Let γ be an integral equivalued regular element of (LieT )(L), where T ⊂ GL is a
maximal torus. Then the affine Springer fiber F(γ) has pure cohomology.

The theorem is proved by showing that the affine Springer fibers in question
admit a paving by varieties which are fiber bundles in affine spaces over certain
smooth, projective varieties, and invoking Deligne’s Theorem 3.10. V. Lucarelli [56]
has provided examples of affine Springer fibers for PGL3 and elements of unequal
valuation which admit pavings by affine spaces, thus proving the purity conjecture
in these cases.

3.8. The Fundamental Lemma

The fundamental lemma, sometimes called, more appropriately, the matching con-
jecture of Langlands and Shelstad, is a family of combinatorial identities which
relate orbital integrals (of different sorts) for different groups, which was conjec-
tured by Langlands and Shelstad [50]. The precise statement is quite complicated;
see loc. cit. and Hales’ paper [35]. The relationship between the groups occurring is
given by “endoscopy”. Endoscopic groups for G are described in terms of the root
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datum of G, and there is no simple relationship in terms of the groups themselves.
As an example, if G = U(n) is a quasi-split unitary group, then the products
U(n1) × U(n2), n1 + n2 = n, are endoscopic groups for n. Note however that in
general an endoscopic group is not a subgroup of the given group.

Before the work of Ngô, see below, the fundamental lemma had been proved
in several special cases; see [35] for references. Furthermore, results of Langlands-
Shelstad, Hales and Waldspurger allowed to reduce the originally p-adic statement
to a Lie algebra version in the function field case over fields of high positive charac-
teristic. The idea of translating the fundamental lemma into an algebro-geometric
statement and using the highly developed machinery of algebraic geometry to
prove it has been around for some time. For instance, see the paper [54] by Lau-
mon and Rapoport. It was not clear until quite recently, though, how to translate
the complicated combinatorics to “simple” geometry, rather than to intractable
geometry.

We have seen above that the number of points of an affine Springer fiber
can be expressed as an orbital integral. In fact, the orbital integrals occurring
in the statement of the fundamental lemma can be expressed in terms of affine
Springer fibers, and one can say that the fundamental lemma predicts some (totally
unexpected) kind of relationship between affine Springer fibers for different groups.

One can try to prove the fundamental lemma by studying affine Springer
fibers. Goresky, Kottwitz and MacPherson [31] have proved the fundamental lemma
in the “equivaluation case”, using their theorems about affine Springer fibers that
we stated above (Theorem 3.17, Theorem 3.18). Laumon had the idea of using de-
formations of affine Springer fibers to make the problem more accessible, see [51],
but still only obtained the result (for unitary groups) assuming the purity conjec-
ture of Goresky, Kottwitz and MacPherson.

A break-through occurred with the work of Laumon and Ngô [53] who real-
ized that the “Hitchin fibration” is a suitable global situation into which (slight
modifications of) the relevant affine Springer fibers can be embedded. This pro-
vides a geometric interpretation of the theory of endoscopy. Heuristically, one gets
a natural way to deform, and eventually “get rid of”, the singularities. The work
of Laumon and Ngô dealt with the simpler case of unitary groups, where the en-
doscopic groups in question are actually subgroups of the original group, so that
it is easier than in the general case to relate the intervening geometric objects to
each other. Recently, Ngô in his celebrated paper [61] was able to overcome the
big remaining difficulties and to prove the fundamental lemma in the general case.

In addition to the original papers cited above we mention the surveys written
by Dat [16], Laumon [52] and Ngô [60]. Neither of these includes the most recent
and complete results by Ngô [61], but see the preprint [17] by Dat and Tuan.
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4. Affine Deligne-Lusztig Varieties

4.1. Deligne-Lusztig Varieties

We start with a short reminder about usual Deligne-Lusztig varieties in order to
put the theory described below into context. Let k be an algebraic closure of the
finite field Fq, let G be a connected reductive group over Fq, let B be a Borel
subgroup defined over Fq, and let T ⊆ B be a maximal torus defined over Fq.
We denote by σ the Frobenius morphism on k, G(k), etc. Let W be the absolute
Weyl group of the pair (G,T ), i.e., the Weyl group for Tk ⊂ Gk. If G is split, then
W is equal to the Weyl group “over Fq”, but here it is unnecessary to make this
assumption. Recall the Bruhat decomposition G(k) =

⋃
w∈W B(k)wB(k).

Definition 4.1 (Deligne-Lusztig, [18]). The Deligne-Lusztig variety associated with
w ∈W is the locally closed subvariety Xw ⊂ Gk/Bk with

Xw(k) = {g ∈ G(k); g−1σ(g) ∈ B(k)wB(k)}/B(k).

Given g, h ∈ (G/B)(k) = G(k)/B(k), one says that the relative position
inv(g, h) of g, h is the unique element w ∈W , such that g−1h ∈ B(k)wB(k). The
latter condition should be understood as a condition on representatives of g, h in
G(k), but is independent of the choice of representatives. With this notion, we can
say that Xw(k) is the set of all elements g ∈ (G/B)(k) such that g and σ(g) have
relative position w.

Example 4.2. If w = id is the identity element, then Xid = (G/B)(Fq) is the set
of Fq-rational points in Gk/Bk, i.e., the set of fix points of σ.

Example 4.3. If G = GLn, then we can identify G(k)/B(k) with the set of full
flags of subvector spaces in kn. We identify the Weyl group with the subgroup
of permutation matrices, and hence with the symmetric group Sn on n letters.
The relative position of flags F•, G• can be described as follows: It is the unique
permutation γ ∈ Sn such that for all i, j,

dim(Fi ∩ Gj) = #{1 ≤ l ≤ j; γ(l) ≤ i}.

We record some foundational properties of Deligne-Lusztig varieties:

Proposition 4.4. Let w ∈W .

1. The Deligne-Lusztig variety Xw is smooth and of dimension ℓ(w), the length
of w.

2. The closure Xw of Xw in Gk/Bk is normal, and

Xw =
⋃

v≤w

Xv,

where ≤ denotes the Bruhat order in W .
3. The Deligne-Lusztig variety Xw is connected if and only if w is not contained

in a σ-stable standard parabolic subgroup of W .
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In fact, generalizing 3., one can easily give a formula for the number of con-
nected components of a Deligne-Lusztig variety.

Proof. See [18], [10], [25]. �

Deligne-Lusztig varieties play an important role in the representation theory
of finite groups of Lie type, i.e., of groups of the form G(Fq), where G is as above.
The reason is that G(Fq) acts on Xw, and hence on its cohomology. Deligne and
Lusztig [18] have shown that all irreducible representations ofG(Fq) can be realized
inside the (ℓ-adic) cohomology of Deligne-Lusztig varieties, with suitable G(Fq)-
equivariant local systems as coefficients.

Deligne-Lusztig varieties also occur in many other situations. As one exam-
ple we mention the results of C.-F. Yu and the author [29] which show that all
“Kottwitz-Rapoport” strata that are entirely contained in the supersingular lo-
cus of a Siegel modular variety with Iwahori level structure are disjoint unions of
copies of a Deligne-Lusztig variety.

Remark 4.5. There is a natural relationship between the Springer representation
and the representations associated with Deligne-Lusztig varieties. This was first
proved by Kazhdan; for details see the appendix of the paper [42] of Kazhdan and
Varshavsky.

4.2. σ-Conjugacy Classes

Now and for the following sections we fix a finite field Fq, and let k be an algebraic
closure of Fq. The Frobenius σ : x 7→ xq acts on k, and also (on the coefficients) on
L = k((ǫ)): σ(

∑
aiǫ

i) =
∑
aqi ǫ

i. We write F = Fq((ǫ)), the fixed field of σ in L.
As usual, we fix an algebraic group G over Fq. We assume, since that is the case
we will consider below, that G is a split connected reductive group (see Kottwitz’
paper for the classification of σ-conjugacy classes in the general case).

Before we come to the definition of affine Deligne-Lusztig varieties, we discuss
Kottwitz’ classification of σ-conjugacy classes in G(L). The (right) action of G(L)
on itself by σ-conjugation is given by h · g = g−1hσ(g). Correspondingly, the σ-
conjugacy class of b in G(L) is the subset {g−1bσ(b); g ∈ G(L)}. We denote by
B(G) the set of σ-conjugacy classes in G(L).

If we consider G(k) instead of G(L), then the situation is considerably sim-
pler: Lang’s theorem (see e. g. [11], Theorem 16.3) says that G(k) is a single
σ-conjugacy class. In fact, this statement is of crucial importance for all three
points of Proposition 4.4.

The set B(G) of σ-conjugacy classes was described by Kottwitz [44], [45]. A
simple invariant of a σ-conjugacy class is the connected component of the loop
group G(L) it lies in. In other words, the map κ : G(L) → π1(G) factors through
a map κ : B(G)→ π1(G) (sometimes called the Kottwitz map).

A more interesting invariant of a σ-conjugacy class is its Newton vector,
an element in X∗(A)Q/W . We will not give its definition here (see [44], [45]; see
Example 4.6 for the case of GLn). For practical purposes, the following description
is often good enough, however:
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The restriction NGT (L) → B(G) of the natural map from G(L) to B(G)

factors through the extended affine Weyl group W̃ = NGT (L)/T (O). This follows

from a variant of Lang’s theorem. The resulting map W̃ → B(G) is surjective
(this is implicit in Kottwitz’ classification, see e. g. [27] Corollary 7.2.2). Now if

w ∈ W̃ , its Newton vector ν can be computed as follows. Let n be the order of the
finite Weyl group part of w, i.e., the order of the image of w under the projection

W̃ = X∗(A) ⋊ W → W . Then wn = ǫλ for some translation element λ ∈ X∗(A),
and ν = 1

nλ ∈ X∗(A)Q/W . The resulting map B(G) → X∗(A)Q/W is called the
Newton map.

Kottwitz shows that combining the Newton map with the map κ, one obtains
an injection

B(G)→ X∗(A)Q/W × π1(G).

In the special case that the derived group Gder is simply connected, the connected
component can be recovered from the Newton vector, so that the Newton map
is injective. For instance this is true for GLn and SLn, but not for PGLn. We
sometimes identify the quotient X∗(A)A/W with the dominant chamber X∗(A)Q,+

of rational coweights λ such that 〈α, λ〉 ≥ 0 for all roots α, and consider Newton
vectors as elements of the latter.

Example 4.6. Let us consider the case G = GLn. Every σ-conjugacy class contains
a representative b of the following form: b is a block diagonal matrix, and each
block has the form (

0 ǫki+1Ik′
i

ǫkiIni−k′i
0

)
∈ GLni

(L).

Here n =
∑
ni, ki, k

′
i ∈ Z, 0 ≤ ki < n. The Newton vector of b is the composite

of the Newton vectors of the single block, and the Newton vector of each block is

(ki+
k′i
ni
, . . . , ki+

k′i
ni

) (where the tuple has ni entries). This representative is called

the standard representative in [27] 7.2.
This shows that the set of elements in X∗(A)Q,+ (which we can identify

with the set of n-tuples of rational numbers in descending order) is the subset of
sequences

a1 = · · · = ai1 > ai1+1 = · · · = ai1+i2 > ai1+i2+1 · · · > ai1+···ir+1 = · · · = an

that satisfy the integrality condition iνai1+···+iν−1+1 ∈ Z for each 1 ≤ ν ≤ r + 1
(with ir+1 = n− i1 − · · · − ir).

Given (a1, . . . , an) ∈ X∗(A)Q,+, we can view the ai as the slopes of the Newton
polygon attached to b. (One usually orders the slopes in ascending order, so that the
Newton polygon is the lower convex hull of the points (0, 0) and (i,

∑n
j=n−i+1 aj),

i = 1, . . . , n.) The integrality condition says that the break points of this polygon
should have integer coefficients.

The classification of σ-conjugacy classes in GLn is the same as the classifi-
cation of isocrystals (due to Dieudonné/Manin). More precisely, an isocrystal is
a pair (V,Φ) consisting of a finite-dimensional L-vector space V and a σ-linear
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bijection Φ (i.e., Φ is additive, Φ(av) = σ(a)v for all a ∈ L, v ∈ V , and Φ is
bijective). Choosing a basis of V , we can write Φ = bσ, b ∈ GLn(L), n = dimV .
A change of basis corresponds to σ-conjugating b. See for instance Demazure’s
book [19], ch. IV.

Given b ∈ G(L), its σ-centralizer is the algebraic group Jb over F with

Jb(F ) = {g ∈ G(L); g−1bσ(g) = b}.

In fact, Jb is an inner twist of the Levi subgroup CentG(ν), the centralizer of the
Newton vector of ν. See [44] 6.5.

Definition 4.7 ([47]). Let b ∈ G(L). The defect of b is the difference

def(b) = rkF (G)− rkF (Jb)

of the (F -)rank of G and the F -rank of the σ-centralizer Jb.

Example 4.8. If b = 1, then Jb = G and def(b) = 0. On the other hand, suppose

that G = GLn, and let b be the generator of the group of length 0 elements in W̃
with Newton vector ( 1

n , . . . ,
1
n ). Then Jb = D×

1
n

, the group of units of the central

division algebra over F with invariant 1
n . In this case, def(b) = n− 1.

Kottwitz [47] has proved that the defect of an element b ∈ G(L) can also
be expressed in a way which is close to Chai’s conjectural formula [14] for the
dimension of Newton strata in Shimura varieties, and to Rapoport’s conjectural
formula ([64] Conj. 5.10) for the dimension of affine Deligne-Lusztig varieties in
the affine Grassmannian (Theorem 4.17 below).

To simplify the discussion, we assume here that the derived group Gder is
simply connected. We have an exact sequence

1→ Gder → G→ D → 1,

where D := G/Gder is a split torus, and obtain an exact sequence of character
groups

0→ X∗(D)→ X∗(A)→ X∗(A ∩Gder)→ 0.

We lift the fundamental weights in X∗(A ∩ Gder) to elements ωi, i = 1, . . . , l in
X∗(A), and in addition choose a basis ωl+1, . . . , ωn of X∗(D). Then the characters
ω1, . . . , ωn form a Z-basis of X∗(A).

Example 4.9. If G = GLn, then Gder = SLn is simply connected, and a possible
choice of the ωi is

ωi = (1(i), 0(n−i)) ∈ Zn = X∗(A), i = 1, . . . , n,

the notation meaning that 1 is repeated i times, and 0 is repeated n− i times.

Proposition 4.10. Assume that the derived group Gder is simply connected, and let
b ∈ G(L) with Newton vector νb. Then

def(b) = 2

n∑

i=1

fr(〈ωi, νb〉),
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where for any rational number α, fr(α) ∈ [0, 1) denotes its fractional part.

Finally, we make the following important definition:

Definition 4.11. A σ-conjugacy class in G(L) is called basic, if the following equiv-
alent conditions are satisfied:

1. The Newton vector ν is central, i.e., lies in the image ofX∗(Z)Q, where Z ⊆ G
is the center of G.

2. The σ-conjugacy class can be represented by an element τ ∈ W̃ with ℓ(τ) = 0.

We call an element b ∈ G(L) basic, if its σ-conjugacy class is basic.

More precisely, one can show that the restriction of the map W̃ → B(G)
to the set ΩG of elements of length 0 is a bijection from ΩG to the set of basic
σ-conjugacy classes ([45] 7.5, [27] Lemma 7.2.1). Looking at σ-conjugacy classes
from the point of view of Newton strata in the special fiber of a Shimura variety,
the basic locus is the unique closed Newton stratum. In the case of the Siegel
modular variety, for instance, this is just the supersingular locus.

4.3. Affine Deligne-Lusztig Varieties: The Hyperspecial Case

Similarly as for usual Deligne-Lusztig varieties, we want to consider all elements
g which map under a “Lang map” to a fixed double coset. When we consider the
affine Grassmannian, we look at G(O)-cosets, which by the Cartan decomposi-
tion (Theorem 2.17) are parameterized by the set X∗(A)+ of dominant coweights.
Furthermore, in the affine context one has to consider generalizations of the Lang
map, i.e., we consider maps of the form g 7→ g−1bσ(g) for an element b ∈ G(L).

Definition 4.12. The affine Deligne-Lusztig variety Xµ(b) in the affine Grassman-
nian associated with b ∈ G(L) and µ ∈ X∗(A)+ is given by

Xµ(b)(k) = {g ∈ G(L); g−1bσ(g) ∈ G(O)ǫµG(O)}/G(O).

We can view this definition as a σ-linear variant of affine Springer fibers,
and as it turns out, there are several analogies between the two theories. For
instance, see the discussion of the dimension formula (Theorem 4.17) below. Of
course, there are also many differences, and an important difference is that the
definition above includes a parameter µ: While in the case of affine Springer fibers
we always considered the set of g such that g−1bg ∈ G(O) (or rather the Lie algebra
version of this), here we consider this relationship for an arbitrary G(O)-double
coset. Furthermore, while in the case of affine Springer fibers the element γ, which
corresponds to the b above, was regular semisimple in the most interesting cases,
in the case of affine Deligne-Lusztig varieties the most interesting case is where b is
a basic element, i.e., up to σ-conjugacy, b is a representative of a length 0 element

of W̃ .
The subset Xµ(b)(k) is locally closed in Grass(k), so it inherits the structure

of a (reduced) sub-ind-scheme. In fact, Xµ(b) is a scheme locally of finite type over
k; see Corollary 5.5 in the paper [36] by Hartl and Viehmann. The key point here
is that points x in the building such that the distance from x to bσ(x) is bounded
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(the bound being given by µ) have bounded distance to the building of Jb over
a finite unramified extension of F ; this was proved by Rapoport and Zink [67].
Compare the corresponding fact for affine Springer fibers, where every point has
bounded distance to X∗(Aγ) (Proposition 3.8 1.). Usually Xµ(b) has infinitely
many irreducible components:

Proposition 4.13. Assume that G is simple and of adjoint type. Let b ∈ G(L),
µ ∈ X∗(A) with Xµ(b) 6= ∅. The following are equivalent:

1. Xµ(b) is of finite type over k.
2. The element b is superbasic, i.e., no σ-conjugate of b is contained in a proper

Levi subgroup of G.
3. G = PGLn and the Newton vector of b has the form ( rn , . . . ,

r
n ), r ∈ Z coprime

to n.

Proof. The implication 2.⇒ 1., which is the most difficult one, follows from Vieh-
mann’s detailed study of the superbasic case [77]. The equivalence of 2. and 3. is
explained in [26] 5.9. There it is also shown that b is superbasic if and only if
Jb is anisotropic. If this is not the case, then the Jb-action on Xµ(b) shows that
Xµ(b) contains points of arbitrarily high distance to the origin (in the sense of the
building), and hence cannot be of finite type. �

Remark 4.14. 1. Multiplication by g−1 ∈ G(L) induces an isomorphism be-
tweenXµ(b) andXµ(g

−1bσ(g)). Since we are only interested in affine Deligne-
Lusztig varieties up to isomorphism, we are free to replace b by another
representative of its σ-conjugacy class. The σ-centralizer Jb(F ) of b acts on
Xµ(b).

2. We may have Xµ(b) = ∅. It is one of the basic questions, when this happens.
The reason that usual Deligne-Lusztig varieties are always non-empty is that
the Lang map g 7→ g−1σ(g) is a surjection G(k)→ G(k): All elements of G(k)
are σ-conjugate to the identity element. Therefore in the classical case there
is no need to introduce the parameter b which we see above. On the other
hand, the Lang map G(L) → G(L) is not surjective. In fact, we have seen
above that G(L) consists of many σ-conjugacy classes. The usual proof for
the surjectivity of the Lang map fails in the setting of ind-schemes: although
the differential of the Lang map g 7→ g−1σ(g) is an isomorphism, one cannot
conclude that the map itself is “étale”.

3. One can obviously generalize the definition to cover other parahoric sub-
groups of G(L). One obtains affine Deligne-Lusztig varieties inside (partial)
affine flag varieties. We will consider the case of the Iwahori subgroup in
detail in the following section.

4. There is a p-adic variant, where L is replaced by the completion of the max-
imal unramified extension of Qp. In this case, the same definition gives an
affine Deligne-Lusztig set. Although one still uses the term affine Deligne-
Lusztig variety in the p-adic situation, this is not really justified. One does
not have a k-ind-scheme structure on the quotient G(L)/I, and hence there
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is no variety structure on Xµ(b). On the other hand, this case is particularly
interesting because of its connection to the theory of moduli spaces of p-
divisible groups and Shimura varieties (see 4.9 below). In fact, in some cases
one obtains a variety structure on the affine Deligne-Lusztig set, induced from
the scheme structure of the corresponding moduli space.

5. We mention that in [57], Lusztig has considered a different analogue of usual
Deligne-Lusztig varieties in an “affine” context (his varieties are infinite-
dimensional, they have a pro-structure rather than an ind-structure).

6. We mention in passing that it is also interesting to replace σ by other mor-
phisms. See the papers by Baranovsky and Ginzburg [3] and by Caruso [13]
for two other choices of σ. The first one is related to the study of conjugacy
classes in Kac-Moody groups, the latter one is motivated by the theory of
Breuil, Kisin and others about the classification of finite flat group schemes.

Example 4.15. If G = SL2, then X∗(A)+ = {(a,−a) ∈ Z2; a ≥ 0}, and an element
of the affine Grassmannian is in the G(O)-orbit corresponding to (a,−a) if and
only if it, seen as a vertex in the Bruhat-Tits building over L, has distance a to the
rational building (i.e., the building over F ). In particular, we find a description
of affine Deligne-Lusztig varieties Xµ(1) which is completely analogous to the
description of affine Springer fibers for SL2 in Section 3.4.1.

There is the following criterion for non-emptiness of Xµ(b):

Theorem 4.16. Let b ∈ G(L) with Newton vector ν ∈ X∗(A)Q,+, and let µ ∈ X∗(A)
be dominant. Then

Xµ(b) 6= ∅ ⇐⇒ κG(b) = µ and ν ≤ µ,

where we denote the image of µ in π1(G) again by µ, and where ν ≤ µ means by
definition that µ− ν is a non-negative linear combination of simple coroots.

The implication⇒ is called Mazur’s inequality; for GLn the statement above
boils down to a version of an inequality considered by Mazur in the study of
p-adic estimates of the number of points over a finite field of certain algebraic
varieties. It was proved by Rapoport and Richartz [65] for general G. The converse,
accordingly called the “converse to Mazur’s inequality” was proved only recently.
It was conjectured to hold, and proved for GLn and GSp2g, by Kottwitz and
Rapoport [48]. C. Lucarelli [55] proved the theorem for classical groups, and finally
Gashi [23] proved it for the exceptional groups (and even in the quasi-split case).
See also Kottwitz’ paper [46].

Theorem 4.17. Let b ∈ G(L) with Newton vector νb ∈ X∗(A)Q,+, and let µ ∈
X∗(A) be dominant. Assume that Xµ(b) 6= ∅. Then

dimXµ(b) = 〈ρ, µ− νb〉 −
1

2
def(b).

Recall that we denote by ρ half the sum of the positive roots. The defect in the
dimension formula should be seen as a correction term, and should be compared
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with the term 1
2 (rk g− dim aw) in the dimension formula for affine Springer fibers

(Proposition 3.8), compare [47], in particular (1.9.1).

The formula for the dimension of Xµ(b) was conjectured by Rapoport in [64]
Conj. 5.10. and reformulated in the current form by Kottwitz [47], using the notion
of defect. In [26], the proof of the dimension formula is reduced to the superbasic
case, i.e., to the case where no σ-conjugate of b is contained in a proper Levi
subgroup of G. Subsequently the formula was proved in the superbasic case by
Viehmann [77].

To reduce the proof of the dimension formula to the superbasic case, one
has to compare the affine Deligne-Lusztig varieties XM

µ (b) and XG
µ (b) for a Levi

subgroup A ⊆ M ⊆ G and b ∈ M(L). If P = MN is a parabolic subgroup, then
there is a bijection P (L)/P (o) ∼= G(L)/K, and this defines a map

α : G(L)/K ∼= P (L)/P (o) −→M(L)/M(o)

from the affine Grassmannian for G to the affine Grassmannian for M . This map is
not a morphism of ind-schemes, but for any connected component Y of the affine
Grassmannian for M , the restriction of α to α−1(Y ) is a morphism of ind-schemes.
This map can be used to relate the affine Deligne-Lusztig varieties for M and for
G; see [26] 5.6.

It is expected that in the hyperspecial case, all affine Deligne-Lusztig varieties
are equidimensional. This has been proved in the two extreme cases:

If b = ǫν is a translation element, then Proposition 2.17.1 in [26] shows
that Xµ(b) is equidimensional. The proof relies on a result proved by Mirković
and Vilonen as part of their proof of the geometric Satake isomorphism. More
precisely, their results about the intersection cohomology of intersections of U(L)-
and K-orbits imply that these intersections are equidimensional. For a proof of the
relevant fact in positive characteristic, which is what one needs in our situation,
see the paper [62] by Ngô and Polo.

On the other hand, if b is basic, then it was proved by Hartl and Viehmann
in [36] that Xµ(b) is equidimensional; see Section 4.10.

To prove equidimensionality in general, one might want to apply the strategy
of the proof of the dimension formula, that is to reduce to the (super-)basic case.
However, to carry out this reduction, a better understanding of the restriction of
the map α to XG

µ (b) would be needed.

A general result about the relationship between affine Deligne-Lusztig vari-
eties for G and Levi subgroups of G is the Hodge-Newton decomposition. Let Mb

be the centralizer of the Newton vector ν of b. There is a unique standard parabolic
subgroup Pb = MbNb with Levi subgroup Mb (and unipotent radical Nb). Denote
by APb

the identity component of the center of M , and let

a+
Pb

= {x ∈ X∗(APb
)⊗ R; 〈α, x〉 > 0 for every root α of APb

in Nb}.

Replacing b by a σ-conjugate, we may and will assume that b ∈ Mb(L), b is
basic with respect to Mb, and κMb

(b) ∈ X∗(APb
)R actually lies in a+

Pb
. Given
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any standard parabolic subgroup P ⊆ G, we use analogous notation as for Pb:
P = MN , AP , etc. Then we have

Theorem 4.18 ([46]; [78] Theorem 1). Let µ ∈ X∗(A) be dominant, and let b, Mb

as above. Let P = MN ⊆ G be a standard parabolic subgroup with Pb ⊆ P . If
κM (b) = µ, then the inclusion XM

µ (b)→ XG
µ (b) is an isomorphism.

See also the paper [59] by Mantovan and Viehmann for a generalization to
unramified groups.

It is hard to determine the set of connected components of an affine Deligne-
Lusztig variety Xµ(b). The problem is that in general the group Jb(F ) does not
act transitively on the set of connected components, see Viehmann’s paper [78],
Section 3, for an example. As Viehmann shows in loc. cit., the situation is better
if instead one considers the following variant: Given µ, define

X≤µ(b) =
⋃

λ≤µ

Xλ(b).

This is a closed subscheme of the affine Grassmannian (equipped with the reduced
scheme structure). A priori, it could be bigger than the closure of Xµ(b) in GrassG,
though. For b basic, Hartl and Viehmann [36] show that X≤µ(b) is equal to the
closure of Xµ(b). For these “closed affine Deligne-Lusztig varieties” one has

Theorem 4.19 (Viehmann [78] Theorem 2). Suppose that the data G, µ, b are
indecomposable with respect to a Hodge-Newton decomposition, i.e., there is no
standard P ⊇ Pb with κM (b) = µ. Assume that G is simple.

1. If ǫµ is central in G, and b is σ-conjugate to ǫµ, then

Xµ(b) = X≤µ(b) ∼= Jb(F )/(Jb(F ) ∩G(O)) ∼= G(F )/G(OF )

is discrete.
2. Assume that we are not in the situation of 1. Then κM (b) 6= µ for all proper

standard parabolic subgroups P = MN ( G with b ∈ M(L), and κG induces
a bijection

π0(X≤µ(b)) ∼= π1(G).

The group Jb(F ) acts transitively on π0(X≤µ(b)).

4.4. Affine Deligne-Lusztig Varieties: The Iwahori Case

Now we come to the Iwahori case. Because of the Iwahori-Bruhat decomposition
G(L) =

⋃
x∈fW

IxI (Theorem 2.18) we associate affine Deligne-Lusztig varieties

inside the affine flag variety to elements b ∈ G(L) and x ∈ W̃ :

Definition 4.20. The affine Deligne-Lusztig variety Xx(b) in the affine flag variety

associated with b ∈ G(L) and x ∈ W̃ is given by

Xx(b)(k) = {g ∈ G(L); g−1bσ(g) ∈ IxI}/I.
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The same remarks as in the case of the affine Grassmannian apply. In fact,
in the Iwahori case it is much harder (and not yet completely settled) to give a
criterion for which Xx(b) are non-empty, and a closed formula for their dimensions.

Note that Xx(b) = ∅ whenever x and b do not lie in the same connected

component of G(L). Since for each x ∈ W̃ we have a unique basic σ-conjugacy
class in the same connected component as x, there is a unique basic σ-conjugacy
class for which Xx(b) can possibly be non-empty. Therefore, as long as we talk
only about basic σ-conjugacy classes, x practically determines b, and below we
sometimes assume implicitly that x and b are in the same connected component
of G(L).

Example 4.21. Let us discuss the case of G = SL2, b = 1. For SL2, the situation
is particularly simple. For instance, every element in the affine Weyl group of SL2

has a unique reduced expression, and there are only two elements of any given
length > 0. What are the Schubert cells IxI which can contain an element of the
form g−1σ(g)? Fix gI ∈ G(L)/I with g 6= σ(g). We consider gI as an alcove in the
Bruhat-Tits building of SL2, and denote by d the distance from gI to the rational
building (normalizing the distance so that an alcove has distance 0 to the rational
building if and only if it is contained in there). Clearly, σ(g)I also has distance d to
the rational building, and because the rational building is equal to the subcomplex
of σ-fix points in the building over L, one sees that the distance from gI to σ(g)I

is 2d − 1. This implies that the element x ∈ W̃ with g−1σ(g) ∈ IxI has length
2d − 1, and shows that Xx(1) = ∅ if ℓ(x) is different from 0 and even. It is not
hard to show that on the other hand all Xx(1) for x of odd length are non-empty,
and that in this case dimXx(1) = 1

2 (ℓ(x) + 1). For a more detailed consideration
along these lines see Reuman’s PhD thesis [68].

To simplify some of the statements below, we assume from now on, for the rest
of Section 4.4, that the Dynkin diagram of G is connected. The (non-)emptiness of
affine Deligne-Lusztig varieties for simply connected groups of rank 2 is illustrated
in Section 4.5 below. Looking at these pictures, or rather at the picture for a fixed b
(cf. [26], [27]), one notices that the behavior is more complicated and more difficult
to describe close to the walls of the finite root system. The following definition was
made by Reuman in order to describe the “good” region.

Definition 4.22. Let x ∈ W̃ . We say that x lies in the shrunken Weyl chambers, if
for every finite root α, Uα(L) ∩ xIx−1 6= Uα(L) ∩ I.

In other words, x lies in the shrunken Weyl chambers, if for every finite root
α there exists an affine root hyperplane parallel to {α = 0} which separates x and
the base alcove. We sometimes call the complement of the shrunken chambers the
critical strips. See the left hand side picture in Figure 2.
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Figure 2. Left: The shrunken Weyl chambers (gray) in the root
system of type C2. Right: The set of P -alcoves for the group of
type G2 and P = s1s2s1(B ∩Bs2B).

We define maps from the extended affine Weyl group W̃ to the finite Weyl
group W as follows:

η1 : W̃ = X∗(T ) ⋊W →W, the projection

η2 : W̃ →W, where η2(x) is the unique element v ∈W such that v−1x ∈ SW̃

η(x) = η2(x)
−1η1(x)η2(x).

Let x ∈ W̃ , and let b be a representative of the unique basic σ-conjugacy class
corresponding to the connected component of x. We define the virtual dimension
(of Xx(b)):

d(x) =
1

2
(ℓ(x) + ℓ(η(x))− def(b)).

The following conjecture which extends a conjecture made by D. Reuman
[69] gives a very simple “closed formula” for non-emptiness and dimension of affine
Deligne-Lusztig varieties for b basic and x in the shrunken Weyl chambers. (Note
that the conjecture as it stands does not extend to all x. See Conjecture 4.28 below
for a more precise, but more technical conjecture about non-emptiness.)

Conjecture 4.23 ([27] Conj. 9.4.1 (a)). Let b ∈ G(L) be basic. Assume that x ∈ W̃
lies in the shrunken Weyl chambers. Then Xx(b) 6= ∅ if and only if κG(x) = κG(b)
and η(x) ∈W \

⋃
T(SWT . In this case,

dimXx(b) = d(x)
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Note that this statement easily implies the dimension formula for affine
Deligne-Lusztig varieties in the affine Grassmannian. Several partial results to-
wards this conjecture have been obtained. In [27], one direction is proved; in fact,
there is the following slightly stronger result which also covers most of the critical
strips:

Theorem 4.24 ([27], Proposition 9.4.4). Let b be basic. Let x ∈ W̃ , say x = ǫλv,
v ∈W . Assume that λ 6= νb and that η(x) ∈

⋃
T(SWT . Then Xx(b) = ∅.

As in the hyperspecial case, the key point of the theorem is to relate certain
affine Deligne-Lusztig varieties for G to Deligne-Lusztig varieties for Levi sub-
groups M . Since the group of connected components of the loop group of M is
much larger than the one for G, the trivial condition that b and x must belong to
the same connected component becomes much stronger, and yields an obstruction
for affine Deligne-Lusztig varieties to be non-empty. To single out the elements

x ∈ W̃ , where this can be done, we need the notion of P -alcove introduced in
loc. cit.; see the right hand side picture of Figure 2 for an example.

In the sequel, we consider parabolic subgroups P ⊆ G. They need not be
standard, i.e., we do not require that B ⊆ P , but we only consider semi-standard
parabolic subgroups, i.e., we ask that A ⊆ P . We denote by P = MN the Levi
decomposition of such a subgroup; here N denotes the unipotent radical of P , and
M is the unique Levi subgroup of P which contains A. Then the (extended affine,
or finite) Weyl group of M is contained in the (extended affine, or finite) Weyl
group of G.

Definition 4.25. Let P = MN ⊆ G be a semi-standard parabolic subgroup. An

element x ∈ W̃ is called a P -alcove, if it satisfies the following conditions:

1. x ∈ W̃M , the extended affine Weyl group of M ,
2. x(I ∩N(L))x−1 ⊆ I ∩N(L).

For P -alcoves, one has a “Hodge-Newton decomposition” (see above and [46],
[59] for analogues in the hyperspecial case):

Theorem 4.26 ([27] Theorem 2.1.4). Suppose that x is a P -alcove for P = MN ⊇
A. If Xx(b) 6= ∅, then the σ-conjugacy class of b meets M(L). Now assume that
b ∈M(L). Then the closed immersion XM

x (b)→ Xx(b) induces a bijection

JMb (F )\XM
x (b)

∼=
−→ Jb(F )\Xx(b).

Here Xx(b) denotes the affine Deligne-Lusztig variety for M , and JMb denotes the
σ-centralizer of b in M .

This is deduced easily from the following, slightly more technical statement,
which shows that x being a P -alcove is a strong requirement from the point of
view of σ-conjugacy classes occurring inside IxI.

Theorem 4.27 ([27], Theorem 2.1.2). Let x be a P -alcove for the semi-standard
parabolic subgroup P = MN ⊂ G. Then every element of IxI is σ-conjugate
under I to an element of IMxIM , where IM = I ∩M .
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These results, together with experimental evidence, lead to the following
conjecture:

Conjecture 4.28 ([27], Conj. 9.3.2). Let b be basic with Newton vector νb, and let

x ∈ W̃ . Then Xx(b) is empty if and only if there exists a semi-standard parabolic
subgroup P = MN ⊆ G, such that x is a P -alcove, and κM (x) 6= κM (νb).

On the other hand, still assuming that b is basic, in [28] X. He and the author
prove non-emptiness ofXx(b) using the “reduction method of Deligne and Lusztig”
(see [18], proof of Theorem 1.6, or [28]) and combinatorial considerations about
the affine Weyl group for all elements x that are sufficiently far from the walls
and which are expected to give rise to a non-empty Xx(b). More precisely, let us
denote by ρ∨ the sum of all fundamental coweights, and by θ the largest root.

Definition 4.29. An element µ ∈ X∗(A) is said to lie in the very shrunken Weyl
chambers, if

|〈µ, α〉| ≥ 〈ρ∨, θ〉+ 2

for every root α.

We then have the following theorem.

Theorem 4.30 ([28]). Let let b be basic, let x ∈ W̃ be in the same connected com-
ponent of G(L) as b, and write x = tµw.

1. If µ is regular, or η2(x) = w0, the longest element of W , then dimXx(b) ≤
d(x).

2. Assume that η(x) ∈W \
⋃
T(SWT . If µ is in the very shrunken Weyl cham-

bers or η2(x) = w0, then Xx(b) 6= ∅.
3. Let G be a classical group, and let x ∈ Wa be an element of the affine Weyl

group such that η(x) ∈ W \
⋃
T(SWT . If µ is in the very shrunken Weyl

chambers or η2(x) = w0, then dimXx(1) = d(x).

A crucial ingredient for part 3. is a theorem of He [37] about conjugacy classes
in affine Weyl groups. E. Beazley has independently obtained similar results, using
the reduction method of Deligne and Lusztig and results by Geck and Pfeiffer about
conjugacy classes in finite Weyl groups.

If b is not basic, then because of the experimental evidence we expect the
following, see [27] Conj. 9.4.1 (b). To simplify the statement, let us assume that

b is in W̃ , and is of minimal length among all the elements representing this σ-

conjugacy class. Let x ∈ W̃ be in the same connected component of G(L) as
b.

• If ℓ(x) is small (with respect to ℓ(b)), then Xx(b) = ∅.
• If ℓ(x) is large (with respect to ℓ(b)), thenXx(b) 6= ∅ if and only ifXx(bbasic) 6=
∅, where bbasic represents the unique basic σ-conjugacy class in the same
connected component as x. In this case, the dimension of the two affine
Deligne-Lusztig varieties differs by a constant (depending on b, but not on
x).
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It is not easy to give precise bounds for what “small” and “large” should
mean. (For the first, one gets approximate information by considering the projec-
tion to the affine Grassmannian.) This question can be viewed as the problem of
finding a suitable analogue of Mazur’s inequality in the Iwahori case. It is hard to
describe the pattern of non-emptiness for x of length close to ℓ(b). For abundant
examples, see the figures for the rank 2 case given in the next section.

One can also study the question of non-emptiness from the slightly different
point of view where one fixes x, and asks for the set of b’s which give a non-empty
affine Deligne-Lusztig variety. See Beazley’s paper [6] for an analysis of the case
of SL3 from this standpoint.

In the Iwahori case, affine Deligne-Lusztig varieties are not equidimensional
in general. An example with G = SL4 is given in [28].

4.5. The Rank 2 Case

There are several ways of computing, in specific cases, whether an affine Deligne-
Lusztig variety is non-empty, and what its dimension is. Let us illustrate one
approach to eliminate the Frobenius morphism from the problem and hence to
reduce it to a purely combinatorial statement, in the case b = 1. By definition,
Xx(1) 6= ∅ if and only if there exists g ∈ G(L) such that g−1σ(g) ∈ IxI. Now
we decompose G(L) =

⋃
w∈fW

IwI, and we see that the existence of g as before

is equivalent to the existence of w ∈ W̃ and i ∈ I with w−1i−1σ(i)w ∩ IxI 6= ∅.
Now the group I is a single σ-conjugacy class: I = {i−1σ(i); i ∈ I}. Therefore the
existence of g is equivalent to the existence of i′ ∈ I with w−1i′w ∩ IxI 6= ∅, or in
other words:

Xx(1) 6= ∅ ⇐⇒ x ∈ Iw−1IwI for some w ∈ W̃ .

For given x and w, the condition on the right hand side can easily be translated
into a combinatorial statement about the Bruhat-Tits building or the affine Weyl
group, respectively. See [26] 6,7, and [27] 10–13, for a detailed discussion. In the
case of rank 2 it is in principle feasible to do such computations “by hand”; see
Reuman’s papers [68], [69]. Using a computer program, one can assemble a large
number of examples.

Here we give examples for simply connected groups of type A2 (i.e., SL3), C2

(i.e., Sp4) and G2, for b = 1. We identify the affine Weyl group Wa with the set
of alcoves in the standard apartment, i.e., with the set of small triangles in the
figures below. The base alcove is marked by a thick border.

We denote the σ-conjugacy classes by letters, according to the tables given
below. The letters associated with σ-conjugacy classes which meet an Iwahori
double coset are printed inside the corresponding alcove. To save space, sequences
of letters without gaps are abbreviated as follows: ABCDE is abbreviated to A-E,

etc. When denoting elements in W̃ as products in the generators, we write s021
instead of s0s2s1, etc.
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4.6. Type A2

In this case, the set of σ-conjugacy classes is well-known, and we just need to say
which σ-conjugacy classes occur in the figure, and how they are named.

b = νb = b = νb =

A ǫ(0,0,0) = 1 (0, 0, 0) Q ǫ(4,1,−5) (4, 1,−5)
B ǫ(1,0,−1) (1, 0,−1) R ǫ(3,2,−5) (3, 2,−5)
C ǫ(2,0,−2) (2, 0,−2) S ǫ(6,0,−6) (6, 0,−6)
D ǫ(2,−1,−1) (2,−1,−1) T ǫ(6,−1,−5) (6,−1,−5)
E ǫ(1,1,−2) (1, 1,−2) U ǫ(6,−2,−4) (6,−2,−4)
F ǫ(3,0,−3) (3, 0,−3) V ǫ(6,−3,−3) (6,−3,−3)
G ǫ(3,−1,−2) (3,−1,−2) W ǫ(5,1,−6) (5, 1,−6)
H ǫ(2,1,−3) (2, 1,−3) X ǫ(4,2,−6) (4, 2,−6)
I ǫ(4,0,−4) (4, 0,−4) Y ǫ(3,3,−6) (3, 3,−6)
J ǫ(4,−1,−3) (4,−1,−3) a s021 (1,− 1

2 ,−
1
2 )

K ǫ(4,−2,−2) (4,−2,−2) b s012 ( 1
2 ,

1
2 ,−1)

L ǫ(3,1,−4) (3, 1,−4) c s021021021 (3,− 3
2 ,−

3
2 )

M ǫ(2,2,−4) (2, 2,−4) d s012012012 ( 3
2 ,

3
2 ,−3)

N ǫ(5,0,−5) (5, 0,−5) e s021021021021021 (5,− 5
2 ,−

5
2 )

O ǫ(5,−1,−4) (5,−1,−4) f s012012012012012 ( 5
2 ,

5
2 ,−5)

P ǫ(5,−2,−3) (5,−2,−3)

4.7. Type C2

Again, it is well-known what the σ-conjugacy classes are, so we just list those
which we consider, and under which names they appear.

b = νb = b = νb =

A ǫ(0,0) = 1 (0, 0) K ǫ(4,0) (4, 0)
B ǫ(1,0) (1, 0) L ǫ(4,1) (4, 1)
C ǫ(1,1) (1, 1) M ǫ(4,2) (4, 2)
D ǫ(2,0) (2, 0) a ǫ(6,5) (6, 5)
E ǫ(2,1) (2, 1) b ǫ(6,6) (6, 6)
F ǫ(2,2) (2, 2) c s012 ( 1

2 ,
1
2 )

G ǫ(3,0) (3, 0) d s012012012 ( 3
2 ,

3
2 )

H ǫ(3,1) (3, 1) e s012012012012012 ( 5
2 ,

5
2 )

I ǫ(3,2) (3, 2) f s012012012012012012012 ( 7
2 ,

7
2 )

J ǫ(3,3) (3, 3) g s012012012012012012012012012 ( 9
2 ,

9
2 )

4.8. Type G2

The set B(G) is the union of the set of dominant translation elements, and the
following two families, each coming from one of the two standard parabolic sub-
groups:

{n · (−
1

6
,−

1

6
,
1

3
); n ∈ Z>0}, {n · (0,−

1

2
,
1

2
); n ∈ Z>0}.
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Figure 3. Dimensions of affine Deligne-Lusztig varieties, type
A2, b = 1.
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Figure 4. Dimensions of affine Deligne-Lusztig varieties, type
C2, b = 1.
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Fd

C

a-ce
A-D

A

a-c
ABD

a

a-c
A-C

a-f
A-FHI

a-e
A-DF

a-e
A-DF

ab
A-C

a-e
A-DF

ABab

a-e
A-DF

a-d
A-D

D

ABa-c

a-f
A-FHI

a-c
ABD

a-c
A-D

A

a-c
A-D

ABab

a-e
A-DF

a-c
A-D

Ab

a-e
A-FI

C

a-c
A-D

Bb

ab
A-D

Aab

d

a-e
A-DF

a-e
A-F

a-e
A-DF

ABa-c

a-e
A-DFI

ab
A-D

a-c
A-D

a-f
A-I

C

a-c
ABD

ab
ABD

a-c
A-D

D

D

ABab

Hf

ABab

a-c
ABD

a-c
A-D

Aa

B

bc
ABD

a-e
A-DF

ab
ABD

ABa-c

c

A

a-c
ABD

ABbc

Fd

A

ABab

a-c
A-D

a-e
A-DF

a-e
A-F

a-e
A-F

a-c
ABD

F

a-c
A-D

A

AB

a-c
ABD

D

ABab

a-e
A-DF

a-c
A-DF

I

Aab

a-f
A-FHI

EI

b

a-d
A-DF

a-c
A-DF

B

I

ABab

b

ABab

ABab

Aab

ABab

a-ce
A-D

I

a-e
A-F

a-ce
A-D

a-e
A-DF

ABa

C

E

a-e
A-DF

a-e
A-DF

a-f
A-FHI

F

d

a-c
A-D

a-c
A-D

B

B

a-e
A-F

a-e
A-DF

c

a-c
ABD

ABa-c

a-c
A-D

a-e
A-F

I

ABab

ABa-c

a-f
A-FHI

a-c
A-D

a-f
A-F

a-e
A-FH

ab
ABD

ABa

a-e
A-DF

K

a-e
A-F

ABa-c

a-f
A-I

a-e
A-FI

A-DF

a-e
A-FI

D

a-c
A-D

a-f
A-IK

Fe

ABb bd
A-Da

ABab

C

a-c
ABD

ab
A-D

a-c
A-D

B

B

ABab

a-c
A-D

ABab

a-d
A-DF

a-c
ABD

CD

ABa-c

h

ABa

ab
ABD

Dc

Aa

ABa-c

I

be
A-Da

ab
ABD

a-e
A-DF

a-e
A-DF

a-e
A-DF

Fd

a-e
A-DF

Aa

Fd

a-c
A-D

ab
ABD

Ab

B

a-f
A-I

de
Fab
A-D

Dc

a-ce
A-E

a-e
A-F

ABab

Bb

a-f
A-FHI

G-I

C

ABab

a-ce
A-D

a-c
ABD

ABab

a

Bb

a-e
A-DF

a-e
A-DF

D

E

Fd

a-ce
A-D

a-f
A-FHI

a-f
A-FHI

ABab

ABa-c

a-c
A-D

a-e
A-F

C

a-c
A-D

ABab

a-c
ABD

ab
ABD

D

D

A

a-e
A-DF

bc
A-D

a-e
A-DF

a-c
A-D

HI

a-e
A-FI

G

ABab

a-e
A-FH

a-c
A-D

a-c
A-D

AB

ABa-c

HI

a-d
A-DF

Hf

a-c
ABD

a-c
ABD

D

a-e
A-F

a-e
A-I

Bb

A-DF

a-c
A-DF

ABab

E

B

D

a-c
A-D

a-e
A-DF

de
Fab
A-D

E

c

c

ABab

F

a-d
A-DF

D

a-e
A-DF

ABb

a-ce
A-E

a-c
A-D

ABab

H

Bb

ab
A-C

Fd

ABa-c

A

ABab

ABab

a-e
A-FI

Aa

Fd

A

Aa

a-e
A-DF

a-e
A-F

Fd

F

Aab

b

bc
ABD

a-c
A-D

ABab

a-c
ABD

B

E

Aa

a-c
A-D

Fd a-e
A-FH

a-e
A-F

f

F

I

d

e

a-e
A-DF

B

a-e
A-F

E

C

A

ABab a-c
A-F

Fe

E

Aa

a-c
A-D

ab
ABD

I

ABab

ABab

a-c
ABD

Fe

a-f
A-FHI

ABab

a-e
A-DF

Fe

bc
A-D

D

C

a-df
A-FHI

a-f
A-FHI

a-c
A-DF

a-c
ABD

a-f
A-I

a-c
A-D

H

ABa-c

a-ce
A-D

HI

a-ce
A-D

a-fh
A-I

a-d
A-F

a-c
A-D

a-c
ABD

A

ABab

d

a-c
A-DF

a-ce
A-D

a-c
ABD

a-c
ABD

G

aa

a-c
A-D

a-c
ABD

a-e
A-F

a-e
A-F

ab
A-D

ABab

Aa

D

a-e
A-DF

ab
ABD

e

Fd

a-f
A-FHI

ab
ABD

a-f
A-FHI

D

a-e
A-DF

a-c
A-D

a-c
A-D

Aa

B

a-c
A-D

de
Fab
A-D

ab
ABD

A

a-e
A-DF

a-e
A-DF

ABab

bd
A-Da

EFd

a-f
A-I

a-e
A-F

c

B

CD

a-e
A-F

F

a-f
A-FHI

CD

a-c
A-DF

a-e
A-DFI

E

e

a-c
A-D

ABab

e

a-c
ABD

E

A

a-c
ABD

CD

KLg

H

A

ABab

e

Aab

a-c
A-D

E

a-e
A-F

D

ab
ABD

ABa-c

A

G

a-e
A-DF

a-e
A-FI

a-e
A-DF

ab
ABD

Aa

ABab

D

a-c
A-D

ab
ABD

a-e
A-FI

A

a-e
A-FI

H

ab
ABD

a-c
A-D

a-c
ABD

a-c
ABD

a-e
A-DF

C

C

b

Hf

a-e
A-DF

Aa

a-e
A-DF

Aab

C

ABab

ABab

ABab

a-c
A-D

a-e
A-F

a-f
FHI
A-D

ABab

a-c
A-D

F

ABbc

ABa-c

c

b

ABab

Bb

A a-d
A-F

D

a-f
A-FHI

b

a-e
A-DFI

Aa

a-d
A-FI

a-c
A-D

a-d
A-DF

a-f
A-FHI

ABab

a-c
ABD

F

a-c
ABD

a-c
A-D

A

E

E

EFd

a-c
A-C

CD

ABab

D

Figure 5. Dimensions of affine Deligne-Lusztig varieties, type
G2, b = 1.
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To find the alcove corresponding to a certain reduced expression, recall that
with our normalization the shortest edge of the alcoves is of type 0, the medium
edge is of type 1, and the longest edge is of type 2.

Here is the list of σ-conjugacy classes considered for the figure.
b = νb = b = νb =

A ǫ(0,0,0) = 1 (0, 0, 0) K ǫ(−1,−2,3) (−1,−2, 3)
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4.9. Relationship to Shimura Varieties

Affine Deligne-Lusztig varieties are related to the reduction of certain Shimura
varieties, or more directly to moduli spaces of p-divisible groups. To establish
this relationship, we consider the p-adic variant of affine Deligne-Lusztig varieties,
cf. Remark 4.14 4. The relation relies on Dieudonné theory (see for instance [19]),
which classifies p-divisible groups over a perfect field in terms of their Dieudonné
modules. A Dieudonné module is a free module of finite rank over the ring of
Witt vectors W together with a σ-linear operator F (Frobenius) and a σ−1-linear
operator V (Verschiebung) such that FV = V F = p (so that V is uniquely
determined by F ).

Now fix a p-divisible group X over k, and denote by M its Dieudonné module,
and by N = M ⊗W W [ 1p ] its rational Dieudonné-module, or isocrystal. We fix a

basis of M over W and write F as bσ, b ∈ GLn(W [ 1p ]), where n = rkW M . Lattices

inside N which are stable under F and V correspond to quasi-isogenies X → X
of p-divisible groups over k. A lattice L = gM , g ∈ GLn(W [ 1p ]) is stable under F

and V if and only if

pL ⊆ FL ⊆ L ,

i.e., g−1bσ(g) ∈ G(O)ǫµG(O) for some µ of the form (1, . . . , 1, 0, . . . , 0). In other
words, µ is a minuscule dominant coweight. Since µ must have the same image as
b under the Kottwitz map κG, it is determined uniquely by X. Therefore we can
identify the set of k-valued points of the moduli space of quasi-isogenies attached
to X with the affine Deligne-Lusztig set attached to GLn, b and µ over L =

Q̂un
p . See the book [66] by Rapoport and Zink for more information about these

moduli spaces, which are often called Rapoport-Zink spaces nowadays. One can
also consider variants for other groups, associated with EL- or PEL-data; see
loc. cit. See Viehmann’s papers [79], [80] for results about the structure of such
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moduli spaces of p-divisible groups from this point of view. For instance, Viehmann
determines the sets of connected and irreducible components, and the dimensions.

Similarly, one obtains a relationship to Shimura varieties, or more precisely to
the Newton strata in the special fiber of the corresponding moduli space of abelian
varieties. Restricting to a Newton stratum corresponds to fixing an isogeny type
of p-divisible groups, i.e., to choosing b. Roughly speaking, the Newton stratum
splits up, up to a finite morphism, as a product of a truncated Rapoport-Zink
space and a “central leaf”. See Mantovan’s paper [58] and [26], 5.10 for details and
further references.

One can also consider the Iwahori case from this point of view. Again, choos-
ing b corresponds to fixing a Newton stratum (or to considering a Rapoport-Zink

space instead of a moduli space of abelian varieties). The choice of x ∈ W̃ corre-
sponds to the choice of a Kottwitz-Rapoport stratum. The affine Deligne-Lusztig
set Xx(b) is related to the intersection of these two strata. For instance, Xx(b) 6= ∅
if and only of Newton stratum for b and KR stratum for x intersect (see Haines’
survey [33] Proposition 12.6).

One can show using an algorithmic description of the non-emptiness ques-
tion (see [27]) that the p-adic variant of Xx(b) is non-empty if and only if the
function field variant Xx(b) is non-empty (to formulate this properly, we assume

that b ∈ W̃ ). In particular, all of the results above in this direction yield infor-
mation about the intersections of Newton strata and Kottwitz-Rapoport strata
and hence about the geometric structure of these moduli spaces of abelian va-
rieties. This is used by Viehmann [81] to obtain results about Shimura varieties
from considerations about the function field case. On the other hand, there is
no good a priori notion of dimension for the p-adic affine Deligne-Lusztig sets. It
seems, however, that once one has a reasonable dimension theory for spaces of
this kind, then the dimensions of Xx(b) should agree in the p-adic and function
field case. In the supersingular case, the dimension of the affine Deligne-Lusztig
variety and the corresponding intersection of a Newton and a Kottwitz-Rapoport
stratum are expected to be equal; in general there should be a non-trivial central
leaf which governs the difference between the affine Deligne-Lusztig variety and
the intersection.

For many more details along these lines see the survey papers by Haines [33]
and Rapoport [64].

4.10. Local Shtuka

In [36], Hartl and Viehmann relate affine Deligne-Lusztig varieties to deformations
of local shtuka. One could call this the function field version of Section 4.9. In the
function field case, the theory works in full generality (whereas in the context of p-
divisible groups one is limited to minuscule cocharacters, and also has limitations
on which groups one can consider). Using their theory, they prove that for basic b,
all affine Deligne-Lusztig varieties Xµ(b) ⊂ Grass are equidimensional, and that
the closure of Xµ(b) is equal to

⋃
λ≤µXλ(b).
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4.11. Cohomology of Affine Deligne-Lusztig Varieties

Consider an affine Deligne-Lusztig variety Xw(b). The σ-centralizer Jb acts on
Xw(b), and hence on its cohomology with compact support, and on its (Borel-
Moore) homology. Since usual Deligne-Lusztig varieties are nowadays an indis-
pensable tool in the representation theory of finite groups of Lie type, one expects
that the representations of Jb occurring in the homology of affine Deligne-Lusztig
varieties are also of great interest. However, because the geometric properties in
the affine case are so much harder to understand, at the moment not much is
known about representation theoretic properties. Let us give an overview about
the results obtained so far.

Zbarsky [82] considered the following case: G = SL3, b = ǫν where ν is
dominant regular. In this case, Jb = A(F ) ∼= Z2×A(OF ). Zbarsky shows that the
subgroup A(OF ) acts trivially on the Borel-Moore homology of Xw(b), and that
the action of Z2 corresponds to permutation of the homology spaces of disjoint
closed subsets of Xw(b). A strategy to show that the integral part of the torus acts
trivially is to extend the action to an action of A(OL). An action of the latter must
be trivial because of a “homotopy argument”; therefore the action of the subgroup
A(OF ) is a fortiori trivial. However, it is not possible to extend the action in this
way in general. Zbarsky defines a stratification of Xw(b) such that on each stratum
the action extends to an action of the larger torus, which is enough to reach the
desired conclusion.

The Iwahori case for G = GL2 has been worked out in detail by Ivanov [40].
In this case, one can determine the geometric structure of the affine Deligne-
Lusztig varieties completely. They are disjoint unions of copies of a product of
some affine space with the complement of finitely many points on a projective
line. As a consequence, one reads off directly the (co-)homology groups (with
constant coefficients), and by analyzing the action of Jb on the set of connected
components one can determine the representations of Jb which one gets; see loc. cit.
Ivanov identifies these representations in terms of compact inductions, and also
analyzes them from the point of view of the Langlands classification. There are no
non-trivial morphisms to supercuspidal representations.

As in the finite-dimensional case, in addition to the homology with constant
coefficients, one should also consider coefficients in certain local systems, or in
other words, one should consider the homology of certain coverings of these affine
Deligne-Lusztig varieties. Finally we mention the results of He [38] who, at least for

G = PGLn and G = PSp2n identifies a subset of W̃ such that all representations
in the homology of affine Deligne-Lusztig varieties occur already in the homology
of affine Deligne-Lusztig varieties Xx(b) with x in this subset.

Acknowledgments. It is a pleasure to thank the organizers of the workshop,
Jochen Heinloth and Alexander Schmitt for the invitation; the workshop was a
very interesting and enjoyable event. I would also like to thank the audience of
the course for their active participation, questions and remarks. Over the years, I
learned a lot about these topics from many people, in particular Thomas Haines,



46 Ulrich Görtz
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263–304.

[21] G. Faltings, Algebraic loop groups and moduli spaces of bundles, J. Europ.
Math. Soc. 5 (2003), 41–68.

[22] P. Garrett, Buildings and classical groups, Chapman and Hall 1997.

[23] Q. Gashi, On a conjecture of Kottwitz and Rapoport, Preprint arXiv:0805.4575v2
(2008)

[24] S. Glaz, Commutative coherent rings, Lecture Notes in Mathematics 1371,
Springer-Verlag, 1989

[25] U. Görtz, On the connectedness of Deligne-Lusztig varieties, Represent. Theory
13 (2009), 1–7.
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