Algebraic Geometry I WS 2025/26

Prof. Dr. Ulrich Görtz Dr. Andreas Pieper

Problem sheet 6

Due date: Dec. 2, 2025.

Problem 19

Let X be a topological space and let \mathscr{F} be a sheaf on X. Let $U \subseteq X$ be an open subset and $s, t \in \mathscr{F}(U)$. Show that the set of $x \in U$ with $s_x = t_x \in \mathscr{F}_x$ is open in X.

Problem 20

Let X be a topological space and let $\varphi \colon \mathscr{F} \to \mathscr{G}$ be a morphism of sheaves on X. Show that the following are equivalent:

- (i) for all open subsets $U \subseteq X$, the map $\varphi(U) \colon \mathscr{F}(U) \to \mathscr{G}(U)$ is bijective,
- (ii) the morphism φ is an isomorphism of sheaves,
- (iii) for all $x \in X$, the map $\varphi \colon \mathscr{F}_x \to \mathscr{G}_x$ on the stalks is bijective.

Problem 21 Let k be a field. Consider $X = \mathbb{A}^2_k = \operatorname{Spec}(k[x,y])$ and $U = X \setminus \{(0,0)\}$. Compute $\mathcal{O}_X(U)$.

Problem 22

Let X be a topological space, and let \mathscr{F}, \mathscr{G} be sheaves of abelian groups on X. Show that the presheaf $U \mapsto \mathscr{F}(U) \oplus \mathscr{G}(U)$ (with the obvious restriction maps) is a sheaf. (*Remark*: It is not hard to show that it satisfies the universal properties of product and of coproduct in the category of sheaves of abelian groups on X.)

(More difficult) bonus question: What about direct sums with infinite index set? What about direct product with infinite index set?