Forschungsseminar: Arithmetische Siegel-Weil-Formeln

In the research seminar this term we will study “arithmetic Siegel-Weil formulas”, more specifically intersections of special cycles on Shimura varieties and connections with modular form. Towards the end of the seminar we will have a look at the recent work of Chao Li and Wei Zhang on the Kudla-Rapoport conjecture.

Date and place: Thursday, 2-4pm, N-U-3.05. First meeting: April 11.

Program: pdf

Talks

11.4.2024 Ulrich Görtz 1 Introduction
18.4.2024 Riccardo Tosi 2 Elliptic curves with complex multiplication Talk notes
25.4.2024 Hind Souly 3 Modular curves
2.5.2024 Xiaoyu Zhang 4 The Hurwitz class number formula
16.5.2024 Sebastian Bartling 5 Shimura varieties
23.5.2024 Guillermo Gamarra Segovia 6 Hilbert modular surfaces
6.6.2024 Jie Lin 7 Resolution of singularities of Hilbert modular surfaces
13.6.2024 Thiago Solovera e Nery 8 Hirzebruch-Zagier divisors
20.6.2024 Yingying Wang 9 Intersections of modular correspondences after Gross and Keating 1
27.6.2024 Symposium Düsseldorf/Essen/Wuppertal
4.7.2024 Paolo Sommaruga 10 Intersections of modular correspondences after Gross and Keating 2
11.7.2024 Giulio Marazza 11 Proof of the Kudla-Rapoport conjecture after Li and Zhang
18.7.2024 Luca Marannino 12 Applications and connections